Open Question

Puzarenko V.G.* (Novosibirsk)

Sobolev Institute of Mathematics Novosibirsk e-mail:vagrig@math.nsc.ru

Oberwolfach(30.04.2021)

< 4 ∰ ▶ < 4

글▶ 글

Admissible Sets

- ▶ KPU axioms of Kripke-Pkatek with urelements.
- ▶ An admissible set is a structure of KPU which is well-founded under \in .

Admissible Sets

- ▶ KPU axioms of Kripke-Pkatek with urelements.
- ▶ An admissible set is a structure of KPU which is well-founded under \in .

Examples

- ▶ $\mathbb{HF}(\mathfrak{M})$ and $\mathbb{HF}(\emptyset)$.
- $\mathbb{L}(\alpha)$ where α is admissible.
- $\mathbb{L}(\alpha; \mathfrak{M})$ where α is \mathfrak{M} -admissible.
- ▶ $\mathbb{HYP}(\mathfrak{M}) = \mathbb{L}(\alpha_0; \mathfrak{M})$ where α_0 is least \mathfrak{M} -admissible.

Preliminaries Open Question

Computability

 Σ (possibly with parameters) - c.e. Δ - c.

< A□ > < ∃</p>

∃ >

Definition

 \mathfrak{M} is Σ -definable in \mathbb{A} iff there exists a map ν from \mathbb{A} onto \mathfrak{M} such that ν -preimages of all the signature relations together with the equality relation on \mathfrak{M} are Δ on \mathbb{A} .

Definition

 \mathfrak{M} is Σ -definable in \mathbb{A} iff there exists a map ν from \mathbb{A} onto \mathfrak{M} such that ν -preimages of all the signature relations together with the equality relation on \mathfrak{M} are Δ on \mathbb{A} .

Proposition

 \mathfrak{M} is Σ -definable in $\mathbb{HF}(\emptyset)$ iff \mathfrak{M} is Σ -definable in $\mathbb{HF}(\mathfrak{N})$ iff \mathfrak{M} is computable.

Definition

 \mathfrak{M} is Σ -definable in \mathbb{A} iff there exists a map ν from \mathbb{A} onto \mathfrak{M} such that ν -preimages of all the signature relations together with the equality relation on \mathfrak{M} are Δ on \mathbb{A} .

Proposition

 \mathfrak{M} is Σ -definable in $\mathbb{HF}(\emptyset)$ iff \mathfrak{M} is Σ -definable in $\mathbb{HF}(\mathfrak{N})$ iff \mathfrak{M} is computable.

Definition

 \mathfrak{M} is definable in \mathbb{A} iff there exists a map ν from \mathbb{A} onto \mathfrak{M} such that ν -preimages of all the signature relations together with the equality relation on \mathfrak{M} are definable by some formulas on \mathbb{A} .

Effective interpretability

Effective interpretability of a structure \mathfrak{M} in \mathfrak{N} coincides with parameterless version of the notion " \mathfrak{M} is Σ -definable in $\mathbb{HF}(\mathfrak{N})$ ", for countable structures \mathfrak{M} and \mathfrak{N} (M. Harrison-Trainor, A. Melnikov, R. Miller, A. Montalban).

Definition

A is Σ -reducible to \mathbb{B} (shortly $\mathbb{A} \sqsubseteq_{\Sigma} \mathbb{B}$) iff there exists a map ν from \mathbb{B} onto \mathbb{A} such that $\nu^{-1}(\Sigma(\mathbb{A})) \subseteq \Sigma(\mathbb{B})$ (preserving arity).

Definition

A is Σ -reducible to \mathbb{B} (shortly $\mathbb{A} \sqsubseteq_{\Sigma} \mathbb{B}$) iff there exists a map ν from \mathbb{B} onto \mathbb{A} such that $\nu^{-1}(\Sigma(\mathbb{A})) \subseteq \Sigma(\mathbb{B})$ (preserving arity).

Proposition

 \mathfrak{M} is Σ -definable in \mathbb{A} iff $\mathbb{HF}(\mathfrak{M})$ is Σ -definable in \mathbb{A} iff $\mathbb{HF}(\mathfrak{M}) \sqsubseteq_{\Sigma} \mathbb{A}$.

Theorem

For any admissible set \mathbb{A} , there exists a directed graph $\mathfrak{M}_{\mathbb{A}}$ such that $\mathbb{A} \equiv_{\Sigma} \mathbb{HF}(\mathfrak{M}_{\mathbb{A}})$. Moreover, this transformation preserves certain properties of \mathbb{A} .

Theorem

For any admissible set \mathbb{A} , there exists a directed graph $\mathfrak{M}_{\mathbb{A}}$ such that $\mathbb{A} \equiv_{\Sigma} \mathbb{HF}(\mathfrak{M}_{\mathbb{A}})$. Moreover, this transformation preserves certain properties of \mathbb{A} .

Corollary

 $\mathbb{A} \sqsubseteq_{\Sigma} \mathbb{B}$ iff for each structure \mathfrak{M} , if \mathfrak{M} is Σ -definable in \mathbb{A} then \mathfrak{M} is Σ -definable in \mathbb{B} .

Jump Structure

Definition $\mathcal{J}(\mathbb{A}) = (\mathbb{HF}(\mathfrak{M}_{\mathbb{A}}), P)$ where P is a universal Σ -predicate on $\mathbb{HF}(\mathfrak{M}_{\mathbb{A}}).$ $\mathcal{J}^{n+1}(\mathbb{A}) = \mathcal{J}(\mathcal{J}^{n}(\mathbb{A})).$

글 > 글

Jump Structure

Definition $\mathcal{J}(\mathbb{A}) = (\mathbb{HF}(\mathfrak{M}_{\mathbb{A}}), P)$ where P is a universal Σ -predicate on $\mathbb{HF}(\mathfrak{M}_{\mathbb{A}}).$ $\mathcal{J}^{n+1}(\mathbb{A}) = \mathcal{J}(\mathcal{J}^{n}(\mathbb{A})).$

Theorem

 \mathfrak{M} is definable in \mathbb{A} iff \mathfrak{M} is Σ -definable in $\mathcal{J}^n(\mathbb{A})$ for some $n \in \omega$.

A fixed point

Theorem (KP + $0^{\#}$ (A. Montalban, 2013); KP + *Power* (P, 2011))

For any cardinality α , there exists an admissible set \mathbb{A}_{α} such that $\mathcal{J}(\mathbb{A}_{\alpha}) \equiv_{\Sigma} \mathbb{A}_{\alpha}$.

A fixed point

Theorem (KP + $0^{\#}$ (A. Montalban, 2013); KP + *Power* (P, 2011))

For any cardinality α , there exists an admissible set \mathbb{A}_{α} such that $\mathcal{J}(\mathbb{A}_{\alpha}) \equiv_{\Sigma} \mathbb{A}_{\alpha}$.

Theorem

 $\mathbb{A} \equiv_{\Sigma} \mathcal{J}(\mathbb{A})$ iff for any structure \mathfrak{M} , if \mathfrak{M} is definable in \mathbb{A} then \mathfrak{M} is Σ -definable in \mathbb{A} .

Conjecture

For every admissible set \mathbb{A} , the following conditions are equivalent:

1)
$$\mathbb{A} \equiv_{\Sigma} \mathcal{J}(\mathbb{A});$$

2) for any admissible set \mathbb{B} , if \mathbb{B} is Σ -definable (as a structure) in \mathbb{A} then $\mathbb{B} \sqsubseteq_{\Sigma} \mathbb{A}$.

$$(1) \Rightarrow (2)$$

Very simple: $[\mathbb{B} \text{ is } \Sigma\text{-definable in } \mathbb{A}] \Longrightarrow$ $[\mathbb{B} \text{ is definable in } \mathbb{A}] \Longrightarrow$ $[\mathfrak{M}_{\mathbb{B}} \text{ is definable in } \mathbb{A}] \Longrightarrow$ $[\mathfrak{M}_{\mathbb{B}} \text{ is } \Sigma\text{-definable in } \mathbb{A}] \Longrightarrow$ $\mathbb{HF}(\mathfrak{M}_{\mathbb{B}}) \sqsubseteq_{\Sigma} \mathbb{A} \Rightarrow \mathbb{B} \sqsubseteq_{\Sigma} \mathbb{A}.$

< A > < 3

æ

Preliminaries Open Question

$(2) \Rightarrow (1)$

Proposition (P,2005) $\mathbb{HYP}(\mathfrak{N})$ is Σ -definable in $\mathbb{HF}(\mathbb{HYP}(\mathfrak{N}))$ but $\mathbb{HYP}(\mathfrak{N}) \not\subseteq_{\Sigma} \mathbb{HF}(\mathbb{HYP}(\mathfrak{N})).$

臣

《口》 《聞》 《臣》 《臣》

$(2) \Rightarrow (1)$

Proposition (P,2005)

$$\begin{split} & \mathbb{HYP}(\mathfrak{N}) \text{ is } \Sigma\text{-definable in } \mathbb{HF}(\mathbb{HYP}(\mathfrak{N})) \text{ but } \\ & \mathbb{HYP}(\mathfrak{N}) \not\sqsubseteq_{\Sigma} \mathbb{HF}(\mathbb{HYP}(\mathfrak{N})). \end{split}$$

Theorem (2019; Avdeev, P)

 $\mathbb{HYP}(\mathfrak{M}) \sqsubseteq_{\Sigma} \mathbb{HF}(\emptyset)$ iff \mathfrak{M} is recursively saturated and is decidable.

$(2) \Rightarrow (1)$

Proposition (P,2005)

$$\begin{split} & \mathbb{HYP}(\mathfrak{N}) \text{ is } \Sigma\text{-definable in } \mathbb{HF}(\mathbb{HYP}(\mathfrak{N})) \text{ but} \\ & \mathbb{HYP}(\mathfrak{N}) \not\sqsubseteq_{\Sigma} \mathbb{HF}(\mathbb{HYP}(\mathfrak{N})). \end{split}$$

Theorem (2019; Avdeev, P)

 $\mathbb{HYP}(\mathfrak{M}) \sqsubseteq_{\Sigma} \mathbb{HF}(\varnothing) \text{ iff } \mathfrak{M} \text{ is recursively saturated and is decidable.}$

Theorem (2019; Avdeev, P)

There exists a structure \mathfrak{M} such that $\mathbb{HYP}(\mathfrak{M})$ is computable as a structure but $\mathbb{HYP}(\mathfrak{M}) \not\sqsubseteq_{\Sigma} \mathbb{HF}(\varnothing)$.

$(2) \Rightarrow (1)$

Proposition (P,2005)

$$\begin{split} & \mathbb{HYP}(\mathfrak{N}) \text{ is } \Sigma\text{-definable in } \mathbb{HF}(\mathbb{HYP}(\mathfrak{N})) \text{ but} \\ & \mathbb{HYP}(\mathfrak{N}) \not\sqsubseteq_{\Sigma} \mathbb{HF}(\mathbb{HYP}(\mathfrak{N})). \end{split}$$

Theorem (2019; Avdeev, P)

 $\mathbb{HYP}(\mathfrak{M}) \sqsubseteq_{\Sigma} \mathbb{HF}(\varnothing) \text{ iff } \mathfrak{M} \text{ is recursively saturated and is decidable.}$

Theorem (2019; Avdeev, P)

There exists a structure \mathfrak{M} such that $\mathbb{HYP}(\mathfrak{M})$ is computable as a structure but $\mathbb{HYP}(\mathfrak{M}) \not\sqsubseteq_{\Sigma} \mathbb{HF}(\varnothing)$.

Relativization

If $\Delta(\mathbb{A}) \cap \mathcal{P}(\omega)$ is not closed under the jump operation then there exists a structure \mathfrak{M} such that $\mathbb{HYP}(\mathfrak{M})$ is Σ -definable in \mathbb{A} but $\mathbb{HYP}(\mathfrak{M}) \not\sqsubseteq_{\Sigma} \mathbb{A}$.