Department of Mathematics, Computer Science, Physics University of Udine

The uniform strength of the open Ramsey theorem

Manlio Valenti manliovalenti@gmail.com

Joint work with Alberto Marcone

Oberwolfach Apr 27, 2021

- $[\mathbb{N}]^{\mathbb{N}}$: space of strictly increasing sequences of natural numbers
- $[f]^{\mathbb{N}}$: subsequences of $f \in [\mathbb{N}]^{\mathbb{N}}$

- $[\mathbb{N}]^{\mathbb{N}}$: space of strictly increasing sequences of natural numbers
- $[f]^{\mathbb{N}}$: subsequences of $f \in [\mathbb{N}]^{\mathbb{N}}$

Fix $P \subset [\mathbb{N}]^{\mathbb{N}}$. A string $f \in [\mathbb{N}]^{\mathbb{N}}$ is called a *homogeneous solution for* P iff

 $[f]^{\mathbb{N}} \subset P \ \lor \ [f]^{\mathbb{N}} \cap P = \emptyset$

- $[\mathbb{N}]^{\mathbb{N}}$: space of strictly increasing sequences of natural numbers
- $[f]^{\mathbb{N}}$: subsequences of $f \in [\mathbb{N}]^{\mathbb{N}}$

Fix $P \subset [\mathbb{N}]^{\mathbb{N}}$. A string $f \in [\mathbb{N}]^{\mathbb{N}}$ is called a *homogeneous solution for* P iff

$$[f]^{\mathbb{N}} \subset P \ \lor \ [f]^{\mathbb{N}} \cap P = \emptyset$$

lands in ${\cal P}$

- $[\mathbb{N}]^{\mathbb{N}}$: space of strictly increasing sequences of natural numbers
- $[f]^{\mathbb{N}}$: subsequences of $f \in [\mathbb{N}]^{\mathbb{N}}$

Fix $P \subset [\mathbb{N}]^{\mathbb{N}}$. A string $f \in [\mathbb{N}]^{\mathbb{N}}$ is called a *homogeneous solution for* P iff

$$[f]^{\mathbb{N}} \subset P \ \lor \ [f]^{\mathbb{N}} \cap P = \emptyset$$

lands in P avoids P

- $[\mathbb{N}]^{\mathbb{N}}: \quad \text{space of strictly increasing sequences of natural numbers}$
- $[f]^{\mathbb{N}}$: subsequences of $f \in [\mathbb{N}]^{\mathbb{N}}$

Fix $P \subset [\mathbb{N}]^{\mathbb{N}}$. A string $f \in [\mathbb{N}]^{\mathbb{N}}$ is called a *homogeneous solution for* P iff

$$[f]^{\mathbb{N}} \subset P \ \lor \ [f]^{\mathbb{N}} \cap P = \emptyset$$

lands in P avoids P

Every open/clopen subset of $[\mathbb{N}]^{\mathbb{N}}$ has a homogeneous solution.

Open-RT as a problem

full version: given an open set, find a homogeneous solution for it (which may either land in it or avoid it).

$$\mathbf{\Sigma}_{1}^{0}-\mathsf{RT}$$

weak versions: given an open set with no solutions that avoid it (resp. land in it), find a solution that lands in it (resp. avoids it);

$\mathsf{wFindHS}_{\boldsymbol{\Sigma}_1^0} \quad \mathsf{wFindHS}_{\boldsymbol{\Pi}_1^0}$

strong versions: given an open set with some solution that lands in it (resp. avoids it), find a solution that lands in it (resp. avoids it);

$$\mathsf{FindHS}_{\Sigma_1^0} \quad \mathsf{FindHS}_{\Pi_1^0}$$

 $\mathsf{C}_{2^{\mathbb{N}}}$: given an ill-founded tree $T\subset 2^{\mathbb{N}},$ produce a path $x\in[T]$

 $\mathsf{C}_{2^{\mathbb{N}}}$: given an ill-founded tree $\, T \subset 2^{\mathbb{N}}, \, \text{produce a path} \, x \in [\,T] \,$

 $\mathsf{C}_{\mathbb{N}^{\mathbb{N}}}$: given an ill-founded tree $T \subset \mathbb{N}^{\mathbb{N}}$, produce a path $x \in [T]$

 $C_{2^{\mathbb{N}}}$: given an ill-founded tree $T \subset 2^{\mathbb{N}}$, produce a path $x \in [T]$ $C_{\mathbb{N}^{\mathbb{N}}}$: given an ill-founded tree $T \subset \mathbb{N}^{\mathbb{N}}$, produce a path $x \in [T]$ $UC_{\mathbb{N}^{\mathbb{N}}}$: restriction of $C_{\mathbb{N}^{\mathbb{N}}}$ to trees with a unique path

 $\mathsf{C}_{2^{\mathbb{N}}}$: given an ill-founded tree $T\subset 2^{\mathbb{N}},$ produce a path $x\in[T]$

 $\mathsf{C}_{\mathbb{N}^{\mathbb{N}}}$: given an ill-founded tree $\, T \subset \mathbb{N}^{\mathbb{N}}, \, \text{produce a path} \, x \in [\,T] \,$

 $\mathsf{UC}_{\mathbb{N}^{\mathbb{N}}}$: restriction of $\mathsf{C}_{\mathbb{N}^{\mathbb{N}}}$ to trees with a unique path

 $\mathsf{TC}_{\mathbb{N}^{\mathbb{N}}}\,$: extension of $\mathsf{C}_{\mathbb{N}^{\mathbb{N}}}$ to all trees, where every $x\in\mathbb{N}^{\mathbb{N}}$ is a solution for a well-founded tree

 $\mathsf{C}_{2^{\mathbb{N}}}\,$: given an ill-founded tree $\,T\subset 2^{\mathbb{N}},$ produce a path $x\in[\,T]\,$

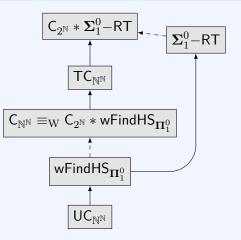
 $\mathsf{C}_{\mathbb{N}^{\mathbb{N}}}\,$: given an ill-founded tree $\,T\subset \mathbb{N}^{\mathbb{N}},$ produce a path $x\in [\,T]\,$

 $\mathsf{UC}_{\mathbb{N}^{\mathbb{N}}}$: restriction of $\mathsf{C}_{\mathbb{N}^{\mathbb{N}}}$ to trees with a unique path

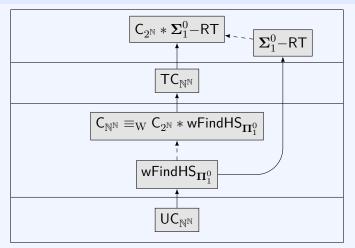
 $\mathsf{TC}_{\mathbb{N}^{\mathbb{N}}}\,$: extension of $\mathsf{C}_{\mathbb{N}^{\mathbb{N}}}$ to all trees, where every $x\in\mathbb{N}^{\mathbb{N}}$ is a solution for a well-founded tree

Theorem (Brattka, de Brecht, Pauly), (Kihara, Marcone, Pauly) $\mathsf{C}_{2^{\mathbb{N}}} <_{\mathrm{W}} \mathsf{U}\mathsf{C}_{\mathbb{N}^{\mathbb{N}}} <_{\mathrm{W}} \mathsf{C}_{\mathbb{N}^{\mathbb{N}}}$

Theorem (Marcone, V.)



Theorem (Marcone, V.)



Open questions

1.
$$C_{\mathbb{N}^{\mathbb{N}}} \leq_{W} \Sigma_{1}^{0} - RT?$$

2. $C_{\mathbb{N}^{\mathbb{N}}} \leq_{W} wFindHS_{\Pi_{1}^{0}}?$

Open questions

- 1. $\mathsf{C}_{\mathbb{N}^{\mathbb{N}}} \leq_{\mathrm{W}} \Sigma_{1}^{0} \mathsf{RT}?$
- 2. $C_{\mathbb{N}^{\mathbb{N}}} \leq_{W} wFindHS_{\Pi_{1}^{0}}?$

A. Marcone and M. Valenti, *The open and clopen Ramsey theorems in the Weihrauch lattice*, The Journal of Symbolic Logic (2021?).