Department of Mathematics, Computer Science, Physics University of Udine

The uniform strength of bad sequences

Manlio Valenti manliovalenti@gmail.com

Joint work with Jun Le Goh and Arno Pauly

Oberwolfach Apr 30, 2021

Main definitions

"Find a descending sequence through an ill-founded linear order"

$$\mathsf{DS} :\subseteq \mathsf{LO} \rightrightarrows \mathbb{N}^{\mathbb{N}} := \leq_L \mapsto \{ x \in \mathbb{N}^{\mathbb{N}} : (\forall i) (x(i+1) <_L x(i)) \}$$

"Find a bad sequence through a non-well quasi-order"

$$\mathsf{BS} :\subseteq \mathrm{QO} \rightrightarrows \mathbb{N}^{\mathbb{N}} := \preceq_Q \mapsto \{ x \in \mathbb{N}^{\mathbb{N}} : (\forall i < j) (x(i) \not\preceq_Q x(j)) \}$$

Main definitions

"Find a descending sequence through an ill-founded linear order"

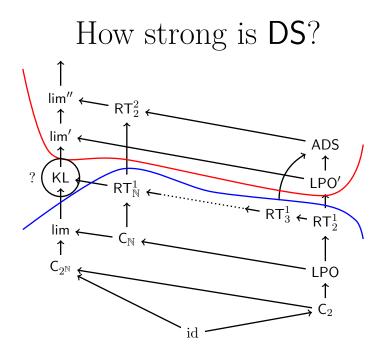
$$\mathsf{DS} :\subseteq \mathrm{LO} \rightrightarrows \mathbb{N}^{\mathbb{N}} := \, \leq_L \, \mapsto \, \{ x \in \mathbb{N}^{\mathbb{N}} \, : \, (\forall i)(x(i+1) <_L x(i)) \}$$

"Find a bad sequence through a non-well quasi-order"

$$\mathsf{BS} :\subseteq \mathrm{QO} \rightrightarrows \mathbb{N}^{\mathbb{N}} := \, \preceq_Q \mapsto \{ x \in \mathbb{N}^{\mathbb{N}} \, : \, (\forall i < j) (x(i) \not \preceq_Q x(j)) \}$$

For
$$\Gamma \in {\Sigma_k^0, \Pi_k^0, \Delta_k^0, \Sigma_1^1, \Pi_1^1, \Delta_1^1}$$
 we can consider
 Γ -DS : $\subseteq \Gamma(LO) \rightrightarrows \mathbb{N}^{\mathbb{N}}$ Γ -BS : $\subseteq \Gamma(QO) \rightrightarrows \mathbb{N}^{\mathbb{N}}$

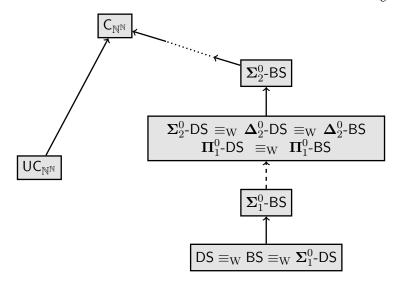
Same as above but answering the question " $a \leq_L b$ " (or " $a \preceq_Q b$ ") is Γ relative to the input.



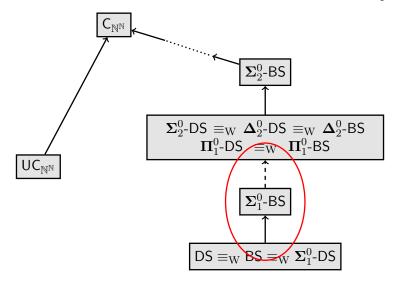
Open questions

1. KL \leq_{W} DS?

The arithmetic **DS** hierarchy



The arithmetic **DS** hierarchy



More definitions

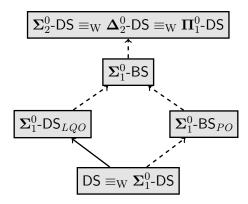
 $\Gamma\text{-}\mathsf{BS}_{LQO}$: Restriction of $\Gamma\text{-}\mathsf{BS}$ to quasi-order with linearly ordered equivalence classes

 $\Gamma\text{-}\mathsf{BS}_{\mathit{PO}}$: Restriction of $\Gamma\text{-}\mathsf{BS}$ to partial orders

More definitions

 $\Gamma\text{-}\mathsf{BS}_{LQO}$: Restriction of $\Gamma\text{-}\mathsf{BS}$ to quasi-order with linearly ordered equivalence classes

 Γ -BS_{PO} : Restriction of Γ -BS to partial orders



Open questions 1. KL \leq_{W} DS? 2. Σ_{1}^{0} -BS $\leq_{W} \Sigma_{1}^{0}$ -BS $_{LQO}$? 3. Δ_{2}^{0} -DS $\leq_{W} \Sigma_{1}^{0}$ -BS?

4. What can be said about Σ_1^0 -BS_{PO}?

Open questions 1. KL \leq_W DS? 2. Σ_1^0 -BS $\leq_W \Sigma_1^0$ -BS_{LQO}? 3. Δ_2^0 -DS $\leq_W \Sigma_1^0$ -BS?

4. What can be said about Σ_1^0 -BS_{PO}?

J. L. Goh, A. Pauly, and M. Valenti, *Finding descending* sequences through ill-founded linear orders, The Journal of Symbolic Logic (2021?), available at https://arxiv.org/abs/2010.03840.