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Q1. Isolation from side and de�nability

• Is any properly 2-c.e. degree either isolated or isolated from

side nontrivially? Namely, given 2-c.e. set D with a proper

2-c.e. Turing degree. Do there exist a c.e. A such that

D 6≤T A and for any c.e. W ≤T D we have W ≤T A?

• Is any properly 2-c.e. degree either isolated or pseudoisolated

(by G. Wu, 2005)? Namely, given 2-c.e. set D with a proper

2-c.e. Turing degree. Do there exist a 2-c.e. B ≤T D such

that D 6≤T B and for any c.e. W ≤T D we have W ≤T B?

• Is nontrivial isolation from side and pseudoisolation equivalent?

Note that c.e. degrees never can be nontrivially isolated from side

or pseudoisolated.
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Q2. Lowness and the CEA hierarchy

Theorem (Arslanov, Batyrshin, Yamaleev)

There exists noncomputable low c.e. degree c such that any 2-c.e.

degree, which is CEA(c), must be c.e.

Theorem (Soare, Stob, 1982)

Given noncomputable low c.e. degree c, there exists a non-c.e.

degree d which is CEA(c)

Question
Does the construction guarantee that the degree CEA(c) belongs
the least possible level of the Ershov hierarchy?

Question
Given low, but non-superlow, c.e. degree c. Do there exists

CEA(c) degree which is not of 2-c.e. degree?



Q3*. The Ershov hierarchy below the halting problem

Question
Given a c.e. degree c. When exactly it contains sets with from all

proper levels of the Ershov hierarchy?

For example, superlow degrees can be only ω-c.e. On the other

hand, below any high c.e. set H one can construct a set of any

proper level of the Ershov hierarchy.


