Bi-embeddable Categoricity of Computable Structures

Nikolay Bazhenov

Sobolev Institute of Mathematics, Novosibirsk, Russia

Oberwolfach Workshop Computability Theory April 26, 2021

Bi-embeddable structures

In the classical computable structure theory, one typically considers algorithmic properties of the *isomorphism type* of a structure S.

In this talk, we work with *bi-embeddability types*.

Two structures A and B are **bi-embeddable** (or equimorphic), denoted by $A \approx B$, if there exist isomorphic embeddings

$$f: \mathcal{A} \hookrightarrow \mathcal{B}$$
 and $g: \mathcal{B} \hookrightarrow \mathcal{A}$.

Known results on bi-embeddable structures

Some of the first computability-theoretic results on bi-embeddability types were obtained by Montalbán (2005), and Greenberg and Montalbán (2008).

Theorem

Let ${\mathcal S}$ be a hyperarithmetical structure from one of the classes given below. Then there is a computable structure ${\mathcal A}$ such that ${\mathcal A}\approx {\mathcal S}.$

- linear orders; [Montalbán 2005]
- Boolean algebras;
- abelian p-groups.

[Montalbán 2005] [Greenberg and Montalbán 2008] [Greenberg and Montalbán 2008]

Known results on bi-embeddable structures

Fokina, Rossegger, and San Mauro (2019) started investigations of degree spectra up to bi-embeddability.

For a countably infinite structure S, the *bi-embeddability* spectrum of S is the set

 $\mathrm{DgSp}_{\approx}(\mathcal{S}) = \{ \mathrm{deg}(\mathcal{A}) : \mathcal{A} \approx \mathcal{S} \text{ and } \mathrm{dom}(\mathcal{A}) = \omega \}.$

A lot of known examples of classical degree spectra of structures can be realized as bi-embeddability spectra.

Known results on bi-embeddable structures

Fokina, Rossegger, and San Mauro (2019) started investigations of degree spectra up to bi-embeddability.

For a countably infinite structure S, the *bi-embeddability* spectrum of S is the set

 $\mathrm{DgSp}_{\approx}(\mathcal{S}) = \{ \mathrm{deg}(\mathcal{A}) : \mathcal{A} \approx \mathcal{S} \text{ and } \mathrm{dom}(\mathcal{A}) = \omega \}.$

A lot of known examples of classical degree spectra of structures can be realized as bi-embeddability spectra.

The following question is still open:

Problem (Fokina, Rossegger, and San Mauro 2019) Is there a bi-embeddability spectrum, which is not a (classical) degree spectrum of a structure? What about vice versa?

Categoricity in the bi-embeddability setting

Definition (Mal'tsev 1961)

A computable structure S is **computably categorical** (or autostable) if for any computable isomorphic copy A of S, there is a computable isomorphism $f: A \to S$.

Definition

A computable structure S is **computably bi-embeddably categorical** (or *computably b.e. categorical*, for short) if for any computable structure A bi-embeddable with S, there are computable isomorphic embeddings $f: A \hookrightarrow S$ and $g: S \hookrightarrow A$.

The definitions above are relativized in a natural way: For a Turing degree d, one obtains the notions of d-computable categoricity and d-computable b.e. categoricity.

- (i) Bi-embeddable categoricity spectra.
- (ii) Index sets.
- (iii) Bi-embeddable categoricity for familiar classes of structures.

Bi-embeddable categoricity spectra

The categoricity spectrum of a computable structure $\mathcal S$ is the set

 $\operatorname{CatSpec}(\mathcal{S}) = \{ \mathbf{d} : \mathcal{S} \text{ is } \mathbf{d} \text{-computably categorical} \}.$

Similarly, one defines the **bi-embeddable categoricity spectrum** for \mathcal{S} :

 $\operatorname{CatSpec}_{\approx}(\mathcal{S}) = \{ \mathbf{d} : \mathcal{S} \text{ is } \mathbf{d}\text{-computably b.e.-categorical} \}.$

The least degree, if it exists, in CatSpec(S) (in $CatSpec_{\approx}(S)$) is called the *degree of categoricity* for S (the *degree of bi-embeddable categoricity* for S, respectively).

Bi-embeddable categoricity spectra

There are a lot of known examples of categoricity spectra: e.g., Theorem (Fokina, Kalimullin, and Miller 2010; Csima, Franklin, and Shore 2013)

Let α be a computable non-limit ordinal. Then any Turing degree d, which is d.c.e. in and above $\mathbf{0}^{(\alpha)}$, is a degree of categoricity.

Bi-embeddable categoricity spectra

There are a lot of known examples of categoricity spectra: e.g., Theorem (Fokina, Kalimullin, and Miller 2010; Csima, Franklin, and Shore 2013)

Let α be a computable non-limit ordinal. Then any Turing degree d, which is d.c.e. in and above $\mathbf{0}^{(\alpha)}$, is a degree of categoricity.

Some of these examples can be transferred into the bi-embeddability setting:

Theorem 1 (B., Fokina, Rossegger, and San Mauro 2021)

Let α be a computable non-limit ordinal.

- (a) Any degree d, which is d.c.e. in and above $\mathbf{0}^{(\alpha)}$, is a degree of bi-embeddable categoricity.
- (b) The set of PA degrees over $\mathbf{0}^{(\alpha)}$ is a bi-embeddable categoricity spectrum.

Theorem 1: Using bi-embeddable triviality

The key notion employed in the proof of Theorem 1 is that of *bi-embeddable triviality*.

A structure S is *bi-embeddably trivial* (or b.e. trivial, for short) if any structure A, which is bi-embeddable with S, is isomorphic to S.

Roughly speaking, our proof combines the following:

- ► The pairs of structures technique by Ash and Knight ~→ If one works with pairs of ordinals, then the b.e. triviality of the resulting structure S is almost immediate.
- Known techniques for categoricity spectra:
 - the construction for d.c.e. degree of categoricity, by Fokina, Kalimullin, and Miller (2010);
 - the construction for categoricity spectrum containing precisely PA degrees [essentially, Miller 2009].

Degrees of b.e. categoricity, revisited

It turns out that there is a *much easier* way to obtain further examples of degrees of b.e. categoricity.

Recall that a total function $f: \omega \to \omega$ is a Π_1^0 function singleton if there is a computable tree $T \subseteq \omega^{<\omega}$ such that f is the unique path through T.

Proposition 1

Every degree $d \ge 0'$, which contains a Π_1^0 function singleton, is a degree of bi-embeddable categoricity.

Degrees of b.e. categoricity, revisited

It turns out that there is a *much easier* way to obtain further examples of degrees of b.e. categoricity.

Recall that a total function $f: \omega \to \omega$ is a Π_1^0 function singleton if there is a computable tree $T \subseteq \omega^{<\omega}$ such that f is the unique path through T.

Proposition 1

Every degree $d \ge 0'$, which contains a Π^0_1 function singleton, is a degree of bi-embeddable categoricity.

Corollary

Let α be a non-zero computable ordinal. If $\mathbf{0}^{(\alpha)} \leq \mathbf{d} \leq \mathbf{0}^{(\alpha+1)}$, then \mathbf{d} is a degree of bi-embeddable categoricity.

To our best knowledge, it is still open whether an analogue of this corollary holds for the case of isomorphisms.

Note that Csima and Ng announced that every Δ_2^0 degree is a degree of categoricity.

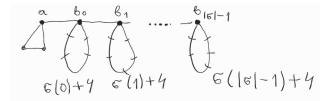
Nikolay Bazhenov

Bi-embeddable categoricity of computable structures

Proof sketch for Proposition 1

Recall that an undirected graph G is strongly locally finite (or a slf-graph, for short) if each component of G is finite.

For a string $\sigma \in \omega^{<\omega}$, we define a finite graph H_{σ} :



It is clear that $H_{\sigma} \hookrightarrow H_{\tau}$ if and only if $\sigma \subseteq \tau$.

For a tree $T \subseteq \omega^{<\omega}$, the slf-graph $\underline{G}(T)$ is defined as disjoint union of all H_{σ} , where $\sigma \in T$.

 $H_{\sigma} \hookrightarrow H_{\tau}$ if and only if $\sigma \subseteq \tau$.

For a tree $T \subseteq \omega^{<\omega}$, the slf-graph $\underline{G}(T)$ is defined as disjoint union of all H_{σ} , where $\sigma \in T$.

Let f be a Π_1^0 function singleton. Let T be a computable tree, which witnesses this fact. Then the graph $G = \underline{G}(T)$ has degree of b.e. categoricity $\deg_T(f)$.

Key Observation: If a graph A is bi-embeddable with G, then A is disjoint union of the following components:

- H_{σ} , for each $\sigma \in T$ such that $\sigma \not\subset f$.
- Graphs S such that H_{σS} → S → H_{τS} for some σ_S ⊆ τ_S ⊂ f. In addition, there are infinitely many such S.

Open Problem

Is there a bi-embeddable categoricity spectrum, which is not a categoricity spectrum? What about vice versa?

(II) The complexity of index sets

0'-computable b.e. categoricity

Downey, Kach, Lempp, Lewis-Pye, Montalbán, and Turetsky (2015) proved that the index set of computably categorical structures is Π^1_1 -complete.

Within the bi-embeddability framework, it is not hard to obtain the following result:

Theorem 2 (B., Fokina, Rossegger, and San Mauro 2018) The index set of 0'-computably bi-embeddably categorical, strongly locally finite graphs is Π_1^1 -complete.

Proof of Theorem 2

- (1) Choose a computable sequence of trees $(T_k)_{k\in\omega}$ such that
 - if $k \in \mathcal{O}$, then T_k is well-founded;
 - ▶ if $k \notin O$, then T_k is ill-founded and T_k has no hyperarithmetical paths.
- (2) We consider a computable sequence $(\underline{G}(T_k))_{k \in \omega}$.
 - ▶ If $k \in O$, then T_k is well-founded. This implies that $\underline{G}(T_k)$ is bi-embeddably trivial.

Since $\underline{G}(T_k)$ is 0'-computably categorical, $\underline{G}(T_k)$ is also 0'-computably b.e. categorical.

▶ If $k \notin O$, then consider two structures

$$G = \underline{G}(T_k)$$
 and $G_1 = \underline{G}(T_k) \sqcup H_{\Lambda}$,

where Λ is the empty string. The graphs G and G_1 are bi-embeddable.

Every embedding $f: G_1 \hookrightarrow G$ computes a path through T_k . Hence, $\underline{G}(T_k)$ is not hyperarithmetically b.e. categorical.

Computable b.e. categoricity

The following question was open:

Problem

Find the complexity of the index set for *computably* bi-embeddably categorical structures.

We answer this question:

Computable b.e. categoricity

The following question was open:

Problem

Find the complexity of the index set for *computably* bi-embeddably categorical structures.

We answer this question:

Theorem 3

The index set of computably bi-embeddably categorical structures is $\Pi^1_1\text{-}\text{complete}.$

Proof sketch for Theorem 3

This is an "enhanced" version of Theorem 2.

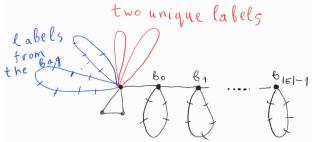
The key ingredient of the proof is the following construction.

Given a computable infinite tree $T\subseteq\omega^{<\omega},$ we produce a computable structure $\mathcal{S}(T)$ such that:

- S(T) is computably categorical;
- if T is well-founded, then $\mathcal{S}(T)$ is b.e. trivial;
- if T is ill-founded, then there is a computable structure $\mathcal{M} \approx \mathcal{S}(T)$ such that every embedding $f : \mathcal{M} \hookrightarrow \mathcal{S}(T)$ computes a path through T.

A modification of the technique of *pushing on isomorphisms*.

There will be a c.e. bag of labels, which is shared by all strategies.



Strategy τ for a string $\sigma \in T$ — It has only one outcome.

- 1. When first visited, τ adds its own copy of H_{σ} : The first vertex has all labels from the bag, and two additional unique labels (the *elder* one and the *younger* one).
- 2. Whenever τ is visited again, we refresh the labels:
 - Add all missing labels from the bag.
 - Enumerate the elder label into the bag. The younger laber becomes the elder one. Add a fresh younger label.

Let $(\mathcal{A}_e)_{e\in\omega}$ be the standard computable list of computable graphs. Denote $\mathcal{S}:=\mathcal{S}(T)$.

Requirement P_e . If $\mathcal{A}_e \cong \mathcal{S}$, then there is a computable isomorphism f from \mathcal{S} onto \mathcal{A}_e .

Strategy τ for P_e — Outcomes: $\infty < \cdots < 2 < 1 < 0$.

When τ is visited, let k be the number of times τ has had outcome ∞ .

We try to extend the isomorphism f for all components, which were added by the strategies ζ satisfying one of the following:

• ζ is incomparable with τ ,

•
$$\zeta \supseteq \hat{\tau}$$
 m for some $m < k$;

 $\triangleright \zeta \supseteq \widehat{\tau \infty}.$

If f is successfully extended, then τ has outcome $\infty.$ Otherwise, τ has outcome k.

Verification Sketch.

Our structure $\mathcal{S}(T)$ is the disjoint union of:

- <u>G</u>(T), with all labels from the bag attached (this structure is built along the true path of the tree of strategies);
- an infinite family of finite graphs each of these graphs has its own unique label.
- (a) The requirements P_e ensure that S(T) is computably categorical.
- (b) If T is well-founded, then the b.e. triviality of $\underline{G}(T)$ guarantees that $\mathcal{S}(T)$ is also b.e. trivial.
- (c) If T is ill-founded, then consider

S(T) and $S(T) \sqcup$ (the copy of H_{Λ} with all bag labels attached). These structures are bi-embeddable.

(III) Bi-embeddable categoricity for familiar classes

Boolean algebras

The bi-embeddability types of computable Boolean algebras \mathcal{B} have a pretty simple classification:

If B is not superatomic, then B is bi-embeddable with the atomless Boolean algebra.

In this case, one can show that ${\mathcal B}$ is not hyperarithmetically b.e. categorical.

• If \mathcal{B} is superatomic, then \mathcal{B} is bi-embeddably trivial.

Boolean algebras

The bi-embeddability types of computable Boolean algebras ${\cal B}$ have a pretty simple classification:

If B is not superatomic, then B is bi-embeddable with the atomless Boolean algebra.

In this case, one can show that ${\mathcal B}$ is not hyperarithmetically b.e. categorical.

• If \mathcal{B} is superatomic, then \mathcal{B} is bi-embeddably trivial.

Theorem 4 (B., Rossegger, and Zubkov)

Let α be a non-zero computable ordinal, and let k be a non-zero natural number. The superatomic Boolean algebra $\mathrm{Int}(\omega^\alpha\cdot k)$ has degree of bi-embeddable categoricity

$$\begin{cases} \mathbf{0}^{(2\alpha-1)}, & \text{if } \alpha < \omega, \\ \mathbf{0}^{(2\alpha)}, & \text{if } \alpha \geq \omega. \end{cases}$$

Scattered linear orders of finite Hausdorff rank

Recall that the rank of a scattered linear order $\ensuremath{\mathcal{L}}$ can be defined as follows:

The Hausdorff rank of \mathcal{L} is the least α such that $\mathcal{L} \in \mathbf{VD}_{\alpha}$. The VD^* -rank of \mathcal{L} is the least α such that \mathcal{L} is a finite sum of orders from \mathbf{VD}_{α} .

Theorem 5 (B., Rossegger, and Zubkov)

Let \mathcal{L} be a computable linear order with VD^* -rank n+1. Then \mathcal{L} is $\mathbf{0}^{(2n+1)}$ -computably bi-embeddably categorical, but not $\mathbf{0}^{(2n)}$ -computably bi-embeddably categorical.

References

- N. Bazhenov, E. Fokina, D. Rossegger, and L. San Mauro, Degrees of bi-embeddable categoricity, Computability, 10:1 (2021), 1–16.
- N. Bazhenov, D. Rossegger, and M. Zubkov, On bi-embeddable categoricity of algebraic structures, preprint, arXiv:2005.07829