esults Pr oc Flash: the ω -REA sets

2nd Vignette: Low₂ r.e. sets 0000

イロト 不得 とうほう イヨン

э

Two Vignettes

Peter Cholak

April, 2021

Oberwolfach https://www.nd.edu/~cholak/papers/oberwolfach2021.pdf

Thanks and Apologies

Proof Id 00 Flash: the ω -REA sets

2nd Vignette: Low₂ r.e. sets 0000

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Overall Theme

Anything which can happen in computability theory happens somewhere in the study of the c.e. sets and degrees. Perhaps really just fun with effective constructions.

Results I

Flash: the ω -REA set

2nd Vignette: Low₂ r.e. sets 0000

The Collapse of an REA hierarchy

On work with Peter Hinman (1994), work with Peter Gerdes (not available yet), and work of Peter Gerdes (2020) plus a new question from Gerdes.

s Proof Ic

Flash: the ω -REA sets

2nd Vignette: Low₂ r.e. sets 0000

▲□▶▲□▶▲□▶▲□▶ □ のQで

Fun with Peter²

A is 1-**R**ecursively Enumerable and Above in *X* (1-REA in *X*) iff $A = X \oplus W_e^X$, for some *e*. W_e^X itself not need compute *X*.

A is (n + 1)-REA in X iff A is 1-REA in Y and Y is *n*-REA in X.

A is *n*-REA iff it is *n*-REA in \emptyset . A set *A* has *n*-REA degree iff it is Turing equivalent to a *n*-REA set.

A 1-REA set is properly 1-REA iff it is not computable. A (n + 1)-REA set is properly (n + 1)-REA iff it is does not have *n*-REA degree.

Results 0 of Ideas

Flash: the ω -REA sets

2nd Vignette: Low₂ r.e. sets 0000

1-REA Sets

 $A = A^{[1]} = W_{e_1}$, for some e_1 . What enters stays.

Results 0 as Flash: the O 2nd Vignette: Low₂ r.e. sets 0000

2-REA Sets

 $A = A^{[1]} \sqcup A^{[2]}$ and $A^{[2]} = W^{A^{[1]}}_{e_2}$, for some e_2 . Axioms cannot be reused.

Results 0 oof Ideas

Flash: the ω -REA sets

2nd Vignette: Low₂ r.e. sets 0000

3-REA Sets

 $A = A^{[1]} \sqcup A^{[2]} \sqcup A^{[3]}$ and $A^{[3]} = W_{e_3}^{A^{[\leq 2]}}$, for some e_3 .

2nd Vignette: Low₂ r.e. sets 0000

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Results

Theorem (Soare and Stob 1982)

Every properly 1-REA set A can be nonuniformly extended to a properly (1+1)-REA set $A \oplus W_e^A$.

Theorem (Cholak and Hinman 1994)

Let *m* be a positive integer. Every properly 1-REA set *A* can be nonuniformly extended to a properly (1 + m)-REA set. Every properly 2-REA set *A* can be nonuniformly extended to a properly (2 + m)-REA set.

Theorem (Cholak and Gerdes)

There is a properly 3-REA set A which cannot be extended to a properly (3 + 1)-REA set.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Extendability Results

The fact the extension must be nonuniform uses Jockusch and Shore's Hop Inversion (published in 1985) and the Recursion Theorem.

Given *A* properly 2-REA and let m = 1. Build two sets $U_{e_0}^A$ and $U_{e_1}^A$ such that, for all 2-REA sets X_e , we meet the following for all *j*, *e*, *j'* and *e'*:

$$\mathcal{R}_{j,e,j',e'}: \Phi_j(A \oplus U^A_{e_0}) \neq X_e \text{ or } \Phi_j(X_e) \neq A \oplus U^A_{e_0}, \text{ or } \Phi_{j'}(A \oplus U^A_{e_1}) \neq X_{e'} \text{ or } \Phi_{j'}(X_{e'}) \neq A \oplus U^A_{e_1}.$$

Uses the true stages approximation and finite injury.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The Requirements for the Nonextendability Result

Build 3-REA sets *A* and Y_i and Turing Functionals Γ_i and Θ such that, for all 2-REA sets X_e , we meet the following for all *i*, *j*, *e*:

$$\mathcal{P}_i: \ \Gamma_i(A \oplus W_i^A) = Y_i \text{ and } \Theta(Y_i) = W_i^A.$$

$$\mathcal{R}_{j,e}: \ \Phi_j(A) \neq X_e \text{ or } \Phi_j(X_e) \neq A.$$

Again uses the true stages approximation and finite injury.

esults Provident

Flash: the ω -REA sets

2nd Vignette: Low₂ r.e. sets 0000

ω -REA sets

 $A^{[i]} = W_{f(i)}^{A^{[i]}}$, where *f* is computable.

If there is a least *i* such that $A^{[i]}$ is not computable then *A* computes a non computable Σ_1^0 set. Otherwise *A* is computable in **0**^{*''*} as the union of computable sets.

Theorem (Gerdes)

There is a ω *-REA set A such that A and 0' form a mininal pair.*

Question (Gerdes)

Is there a ω -REA set A where all $A^{[i]}$ are low₂ but A computes 0^{'''}?

lts Proc

Flash: the ω -REA sets

2nd Vignette: Low₂ r.e. sets •000

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Theorem (Cholak, Downey, Greenberg 2022) If A is low₂ then $\mathcal{L}(A)$ and \mathcal{E} are isomorphic.

The issue is access to elements of \overline{A} .

Domination

Definition

Given two functions *g* and *r* from the nationals to the nationals, *g* dominates *r* iff, there is a *k*, for all $l \ge k$, $g(l) \ge r(l)$.

Theorem (Martin)

H is high iff $H' \equiv_T 0''$ iff there is a function *g* of Turing degree *H* which dominates all computable functions.

Corollary

A is low_2 iff $A'' \equiv_T 0''$ iff 0' is high over $A((0')' \equiv_T A'')$ iff there is function g of Turing degree 0' which dominates all A-computable functions.

lts	Proof	Id
	00	

Flash: the ω -REA sets

2nd Vignette: Low₂ r.e. sets 0000

Low₂ Access

Uniformly stagewise construct sets F_i , such that, for all $i, F_i \cap \overline{A}$ is nonempty. If $F_{i,s} \cap \overline{A}_s$ is empty add every ball outside A which is below some *large* ball into F_e .

Stagewise define $h_s^{A_s}(e)$ as the maximum element of $F_{i,s} \cap \overline{A}_s$ with same use.

We will e_k -certify the balls in F_e at stage s + 1 if $g_{s+1}(e) \ge h_s^{A_s}(e)$, where it could be that g dominates h from k onward at stage s.

Since *A* is low_2 , for some least *k*, for almost all *e*, the balls inside F_e will be e_k -certified. By the use of *largeness*, some of these balls will be *freshly* e_k -certified at the final certification stage for F_e .

For each possible k, consider the e_k -certified balls as elements of \overline{A} and use them accordingly to construct what is needed but one such object for each possible k. The k makes this harder to iterate.

Proof Id

Flash: the ω -REA sets

2nd Vignette: Low₂ r.e. sets ○○○●

Time for a diagram?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで