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Depth
In many cases, the same information may be organized in different ways,
making it more or less useful for various computational purposes. The
notion of depth was introduced by Bennett as an attempt to separate
useful and organized information from random noise and trivial information.

Definition 1.
A set X is deep if, for every computable time-bound t and c ∈ N,(

∞
∀n
)[

K t(X � n)− K (X � n) ≥ c
]
.

Otherwise, we say that X is shallow.

Fact.
The halting problem ∅′ is deep.
If a set is ML-random or computable, then it is shallow.
(Slow Growth Law) If X is deep and X ≤tt Y , then Y is deep.
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Lower-semicomputable discrete semimeasures

Definition 2.
A discrete semimeasure is a function m : 2<N → [0,∞) such that∑

σ m(σ) ≤ 1. It is lower-semicomputable if it is approximable from
below. We will write lss for lower-semicomputable discrete
semimeasure.
A lss m is universal if, for each lss m,

(∀σ)
[
m(σ) ≤× m(σ)

]
.

Fact (Coding Theorem).

There exists a universal lss m. In particular, σ 7→ 2−K(σ) is a universal lss.
Hence,

K (σ) =+ − log m(σ).
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Depth in terms of discrete semimeasures

It is often convenient to use the following equivalent characterization of
depth in terms of discrete semimeasures.

A set X is deep if and only if, for every computable time-bound t,

lim
n→∞

m(X � n)

mt(X � n)
=∞.

or equivalently, iff for every computable semimeasure m ,

lim
n→∞

m(X � n)

m(X � n)
=∞.
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Relativized depth

Both the unbounded and the t-time-bounded prefix-free complexities of a
string σ relative to an oracle A, denoted, respectively, by KA(σ) and
KA,t(σ) are defined analogously to the unrelativized case.

The relativized notion of depth is meant to better understand the power of
oracles in organizing information.

Definition 3.
Given an oracle A, we say that a set X is A-deep if, for every computable
time-bound t and c ∈ N,(

∞
∀n
)[

KA,t(X � n)− KA(X � n) ≥ c
]
.

Otherwise, we say that X is A-shallow.

The main properties of depth mentioned above relativize.
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When depth and relativized depth are incomparable: the
case of ∅′
For some oracles, depth and relativized depth are incomparable. An
example is given by the halting problem ∅′. Clearly, ∅′ is ∅′-shallow.

Moreover, we can build a ML-random (hence shallow) but ∅′-deep set. In
order to do so, we need the following technical lemma (basically, a
rephrasing of the Space Lemma (Gács, 1986 and Merkle and Mihailović,
2004)).

Lemma 4.

Let l(n) ≥+ log n be a computable function. There exists a ∆0
2 perfect tree

T such that:
every string at level n of T has length l(n);
every infinite path of T is ML-random.

Moreover, if l(n) ≥+ n2, then every string at level n of T has at least 2n+1

children.
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When depth and relativized depth are incomparable: the
case of ∅′ (continue)

Theorem 5.
There exists a ∆0

2 set X which is ML-random and ∅′-deep.

Proof (Sketch). Let T be a tree as in Lemma 4 and F ≤T ∅′ dominate
every computable time-bound.
There exists a path (τn)n ⊂ T such that, for almost all n, K ∅

′,F (τn) ≥ n,
as every string σ at level n − 1 has at least 2n children. Let X =

⋃
n τn.

Being a path of T , X is ML-random, hence shallow. Moreover, X is ∆0
2,

hence, for almost all n, K ∅
′
(X � n) ≤ 2 log n.

Then, for n2 < m ≤ (n + 1)2,

K ∅
′,F (X � m)− K ∅

′
(X � m) ≥ n − 8 log n,

which is eventually larger than any constant. This shows that X is ∅′-deep,
as F is dominating.
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Deep sets remain deep relative to ML-random oracles

There are also oracles which do not make any deep set shallow relatively to
them. We show that this is the case for ML-random oracles.
We will make use of the following characterization of ML-randomness.

Definition 6.
Ψ : 2N → [0,∞] is an integral test if

Ψ is lower-semicomputable, i.e. the supremum of a computable
sequence of computable functions Ψn : 2N → [0,∞), and∫
2N Ψdµ ≤ 1.

Fact.
X is not ML-random if and only if there is an integral test Ψ such that
Ψ(X ) =∞.
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Deep sets remain deep relative to ML-random oracles
(continue)

Theorem 7.
Let A be ML-random. If a set X is deep, then X is also A-deep.

Proof’s sketch. We prove more: if A is ML-random, then, for every
computable time-bound t, there is a computable time-bound t ′ with

(∀σ)
[
K t′(σ)− K (σ) ≤+ KA,t(σ)− KA(σ)

]
. (†)

The map σ 7→
∫
2N mA,t(σ)dµ is a computable discrete semimeasure.

Hence, ∫
2N

mA,t(σ)dµ ≤× mt′(σ),

for some computable time-bound t ′.
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Deep sets remain deep relative to ML-random oracles
(continue)
Proof’s sketch (continue). Consider the map Ψ : 2N → [0,∞] given by

Ψ(A) =
∑
σ

mA,t(σ)m(σ)

mt′(σ)
.

Ψ is lower-semicomputable and, being only lss involved,
∫
2N Ψdµ ≤ 1.

Then Ψ is an integral test.
So, if A is ML-random, Ψ(A) < c , for some c . But then the map

σ 7→ mA,t(σ)m(σ)

mt′(σ)

is an A-lss. Then, for any string σ,

mA,t(σ)m(σ)

mt′(σ)
≤× mA(σ),

which implies (†) by the Coding Theorem.
Valentino Delle Rose (Università degli Studi di Siena)Relativized Depth 27.04.2021 10 / 16



Shallow sets remain shallow relatively to almost every oracle

Theorem 8.
If X is shallow, then µ ({A : X is A-deep}) = 0.

The idea to prove this theorem is that, if t is a computable time-bound
such that K t(X � n) =+ K (X � n) i.o., then

lim
d→∞

µ

({
Y :

(
∞
∀n
)[

mY (X � n)

mt(X � n)
≥ d

]})
= lim

d→∞
µ(Ld) = 0.

Ld is, in fact, a test for 2-randomness relative to X . Hence, in particular,
X remains shallow relatively to every X -2-random oracle.

Question. Does every shallow set remain shallow relatively to any
n-random oracle, for some n?
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Depth relative to ML-random oracles is strictly weaker than
depth

We answer the previous question in the negative.

Theorem 9.

For every ML-random set A, there exist a shallow set X which is A-deep.

Intuitively, the proof of this fact is similar to the one-time pad protocol in
cryptography: we can “mix” together some important piece of information
x with some random string a we know, so that the output x � a still looks
important for us (as we can distinguish the added random noise a), while
looking random to the others.
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Depth relative to ML-random oracles is strictly weaker than
depth (continue)

Fact (Moser and Stephan, 2017).

There exists a non-empty Π0
1 class consisting of deep sets.

Hence, we can use well-known basis theorems to obtain deep sets with
some desired properties.

Fact (Randomness Basis Theorem).

Let A be ML-random. Every non-empty Π0
1 class contains a set X such

that A is X -ML-random.

So, if A is ML-random, there is a deep set X such that A is X -ML-random.
Consider the set Y = A� X . Y is X -ML-random, as A is, and hence
shallow. Moreover, X is deep, hence A-deep. Then, by the relativized
version of the Slow Growth Law, Y is A-deep, as X ≤tt Y ⊕ A.
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Digression: PA-complete degrees are the join of two
ML-random degrees

As a consequence of Theorem 9, it is possible to give a short proof of the
following result.

Fact (Barmpalias, Lewis and Ng, 2010).
Every PA-complete degree is the join of two ML-random degrees.

The key point of the proof is the following lemma, whose proof uses
techniques due to Kučera and Slaman (2006).

Lemma 10.

Let C be a non-empty Medvedev-complete Π0
1 class (i.e., there is a

tt-reduction Φ such that Φ(X ) is DNC2 for every X ∈ C). For every A of
PA-complete Turing degree, there exists B ∈ C such that B ≡T A.
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Digression: PA-complete degrees are the join of two
ML-random degrees (continue)

Since any DNC2 function is deep, by Theorem 9 we get that the following
Π0

1 class is non-empty (for large enough d)

C = {〈A,X ,Y 〉 : A ∈ DNC2,X ∈ MLRd ,Y ∈ MLRd ,X � Y = A} ,

where MLRd = {X : (∀n)[K (X � n) ≥ n − d ]}. Moreover, the first
projection witnesses that Lemma 10 applies to our class. Hence, for every
B with PA-complete degree there is a triple 〈A,X ,Y 〉 ∈ C such that
B ≡T 〈A,X ,Y 〉. Moreover, since A = X � Y , clearly
B ≡T 〈A,X ,Y 〉 ≡T 〈X ,Y 〉.
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Shallowness is preserved by K-trivial oracles
Recall that a set A is K-trivial if K (A � n) ≤+ K (n) for all n. Nies (2005)
proved that a set A is K -trivial if and only if it is low for K, namely if
K (σ) ≤+ KA(σ) for every string σ.

Theorem 11.
Let A be K -trivial. Then every shallow set is A-shallow.

Proof. Let t be a computable time-bound such that
K t(X � n) =+ K (X � n) i.o. Then, for any such n,

KA,t(X � n) ≤+ K t(X � n) =+ K (X � n) ≤+ KA(X � n),

so that X is A-shallow.

Then depth relative to K -trivial oracles is either strictly stronger than or
equal to depth.
Open question. Which of the above possibilities do actually happen? Do
all K -trivial oracles yield the same answer?
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