Oberwolfach Workshop April 26–May 1, 2021 Computability Theory Densely Computable Structures

> Valentina Harizanov George Washington University

harizanv@gwu.edu http://home.gwu.edu/~harizanv/

Joint work with Wesley Calvert and Douglas Cenzer.

Generic case complexity

- It would be worthwhile to distinguish which results in computable model theory depend on "special" (and potentially rare) inputs.
- For problems on groups, Kapovich, Myasnikov, Schupp, and Shpilrain proposed using notions of asymptotic density to see whether a partial computable function could solve "almost all" instances of a problem.
- They showed that for a large class of finitely generated groups the classical decision problems, such as the word problem or the conjugacy problem, have linear time generic case complexity.

- Kapovich, Myasnikov, Schupp, and Shpilrain established that a finitely presented group with undecidable word problem, given by W. Boone, has a generically computable copy.
- Jockusch and Schupp extended this approach to the broader context in computability theory. They introduced and studied *generically computable* and *coarsely computable* sets of natural numbers.
- For $A \subseteq \omega$ and $n \ge 1$, the density of a set A up to n, denoted by $\rho_n(A)$, is

$$rac{|A \cap \{\mathsf{0},\mathsf{1},\mathsf{2},\ldots,n-1\}|}{n}$$

• The (asymptotic) density of A is $\rho(A) = \lim_{n \to \infty} \rho_n(A)$.

- For example, $A = \{2^n : n \in \omega\}$ has density 0.
- A is (asymptotically) dense if $\rho(A) = 1$.
- The upper density of A is lim sup_n ^{|(A∩n)|}/_n.
 It is 1 if there is a sequence n₀ < n₁ < · · · such that lim_i ρ_{n_i}(A) = 1.
- If A is a c.e. set with upper density 1, then A has a computable subset with upper density 1.

Generically and coarsely computable sets (Jockusch and Schupp)

- For $S \subseteq \omega$, let c_S denote the characteristic function of S.
- S is generically computable if there is a partial computable function
 φ : ω → {0,1} such that: dom(φ) has asymptotic density 1, and
 c_s ↾ dom(φ) = φ.
- S is coarsely computable if there is a total computable function
 τ : ω → {0,1} such that {x : c_S(x) = τ(x)} has asymptotic
 density 1.

Equivalently, S is coarsely computable if there is a computable set T such that $S \triangle T$ has asymptotic density 0.

• (Jockusch and Schupp)

There is a coarsely computable c.e. set that is not generically computable.

There is a generically computable c.e. set that is not coarsely computable.

• A structure \mathcal{D} for a finite language is c.e. if its domain D is c.e. and each relation of \mathcal{D} is c.e. and each function of \mathcal{D} is the restriction of a partial computable function to D.

Asymptotic density in $\omega\times\omega$

Let A ⊆ ω. Then A has asymptotic density δ in ω if and only if A × A has asymptotic density δ² in ω × ω.

Hence: A is asymptotically dense in ω iff $A \times A$ is asymptotically dense in $\omega \times \omega$.

There is a computable dense set C ⊆ ω × ω such that for any infinite c.e. set E ⊆ ω, the product E × E is not a subset of C.

Generically computable structures

- Consider a structure A for finite language with universe ω, with functions {f_i : i ∈ I}, each f_i of arity p_i, and relations {R_j : j ∈ J}, each R_j of arity r_j.
- We call \mathcal{A} generically computable if \mathcal{A} has

a substructure \mathcal{D} with a c.e. domain D of asymptotic density 1, and partial computable functions $\{\phi_i : i \in I\}$ and $\{\psi_j : j \in J\}$ such that each ϕ_i agrees with f_i on D^{p_i} and each ψ_j agrees with c_{R_i} on the set D^{r_j} .

Example

- Let $\mathcal{M} = (\omega, A)$, where A is a unary relation.
- Assume that A is a generically computable set. Let a partial computable function φ be such that: dom(φ) has density 1, and for every x ∈ dom(φ), we have c_A(x) = φ(x). Let D = dom(φ). Consider the substructure D = (D, A ∩ D). Since D is c.e. and φ is c_{A∩D} on D, the structure M is generically computable.
- Assume that *M* is a generically computable structure with a substructure *D* = (*D*, *A* ∩ *D*) with a dense c.e. domain *D* such that *c*_{*A*∩D} extends to a partial computable function. Let *φ* be the restriction of that function to *D*. The restriction is partial computable and agrees with *c*_{*A*} on *D*, so the set *A* is generically computable.

Σ_n generically c.e. structures

A substructure B is a Σ_n elementary substructure of A if for any infinitary Σ_n formula θ(x₁,...,x_n) and b₁,...,b_n ∈ B:

 $\mathcal{A} \vDash \theta(b_1, \ldots, b_n)$ iff $\mathcal{B} \vDash \theta(b_1, \ldots, b_n)$

- A structure A is Σ_n generically c.e. if there is a c.e. dense set D such that the substructure D with universe D is a c.e. substructure and also a Σ_n elementary substructure of A.
- Clearly, a Σ_{n+1} generically c.e. structure is Σ_n generically c.e.
- A computable structure is Σ_n generically c.e. for any n.

Generically computable injection structures

- An *injection structure* A = (A, f) has a single unary function f that is 1 − 1.
- Any c.e. injection structure is isomorphic to a computable injection structure.
- For $a \in A$, the *orbit* of a is

$$\mathcal{O}_f(a) = \{ b \in A : (\exists n \in \mathbb{N}) [f^n(a) = b \lor f^n(b) = a] \}$$

• The *character* of \mathcal{A} is defined as: $\chi(\mathcal{A}) = \{ \langle k, n \rangle : n, k > 0 \& \text{ there are } \geq n \text{ orbits of size } k \}_{-}$ • An injection structure $\mathcal{A} = (\omega, f)$ has a generically computable copy iff

(i) ${\cal A}$ has an infinite substructure isomorphic to a computable structure iff

(ii) \mathcal{A} has an infinite orbit or $\chi(\mathcal{A})$ has an infinite c.e. subset.

•
$$\mathcal{A} = (\omega, f)$$
 has a Σ_1 generically c.e. copy iff

(i) \mathcal{A} has a computable copy iff

(ii) $\chi(\mathcal{A})$ is a c.e. set iff

(iii) \mathcal{A} has a Σ_2 generically c.e. copy.

Computable and c.e. equivalence structures

• For an equivalence structure $\mathcal{A} = (A, E)$:

The *character* of \mathcal{A} (or E) is defined as: $\chi(\mathcal{A}) = \{ \langle k, n \rangle : n, k > 0 \& \text{ there are } \geq n \text{ equivalence classes}$ of size $k \}$

- If A and E are c.e., the character $\chi(\mathcal{A})$ is a Σ_2^0 set.
- K ⊆ ⟨(ω − {0}) × (ω − {0})⟩ is a *character* if for all n > 0 and k:

$$\langle k, n+1 \rangle \in K \Rightarrow \langle k, n \rangle \in K$$

- K is a character if $K = \chi(\mathcal{A})$ for some equivalence structure \mathcal{A} .
- (Calvert, Cenzer, Harizanov, Morozov)
 For any Σ⁰₂ character K, there is a computable equivalence structure A with character K and infinitely many infinite equivalence classes.
- (Cenzer, Harizanov, Remmel) For any Σ_2^0 character K, there is a c.e. equivalence structure, even with a computable domain, with character K and with any finite number $r \ge 1$ of infinite equivalence classes.

Generically computable equivalence structures

- If an equivalence structure A = (ω, E) is generically computable, then there is an infinite computable set Y ⊆ ω such that the restriction of E to Y × Y is computable.
- Every equivalence structure $\mathcal{A} = (\omega, E)$ has a generically computable copy.

 Σ_1 and Σ_2 generically c.e. equivalence structures

• A function $h: \omega^2 \to \omega$ is a (Khisamiev's) s_1 -function if for all i, t, $h(i,t) \leq h(i,t+1)$, $m_i = \lim_s h(i,s)$ exists, and

 $m_0 < m_1 < \cdots < m_i < \cdots$

 Let A = (A, E) be a c.e. equivalence structure with no infinite equivalence classes and an unbounded character. Then there is a computable s₁-function h such that A contains an equivalence class of size m_i for each i ∈ ω.

- We say that a character has an s₁-function h if it has an equivalence class of size m_i for each i.
- For every Σ₂⁰ character K that is either bounded or has a computable s₁-function, there is a computable equivalence structure A with character K and no infinite equivalence classes.
- If \mathcal{A} is c.e. equivalence structure with no infinite equivalence classes, then \mathcal{A} is isomorphic to a computable structure.

- An equivalence structure $\mathcal{A} = (\omega, E)$ has a Σ_1 generically c.e. copy iff at least one of the following conditions hold:
 - 1. $\chi(\mathcal{A})$ is bounded;

2. $\chi(\mathcal{A})$ has a Σ_2^0 subset K, a character with a computable s_1 -function;

- 3. \mathcal{A} has an infinite class and $\chi(\mathcal{A})$ has a Σ_2^0 subset K;
- 4. \mathcal{A} has infinitely many infinite classes.
- $\mathcal{A} = (\omega, E)$ has a Σ_2 generically c.e. copy iff
 - (i) ${\cal A}$ has a c.e. copy iff
 - (ii) \mathcal{A} has a Σ_3 generically c.e. copy.

Coarsely computable structures

A structure A is coarsely computable if there are a computable structure E and a dense set D such that the structure D with universe D is a substructure of both A and of E and all relations and functions agree on D :

$$\mathcal{D}\subseteq egin{array}{c} \mathcal{A} \ \mathcal{E} \end{array}$$

- $\mathcal{A} = (\omega, A)$ is a coarsely computable structure iff A is a coarsely computable set.
- There is a generically computable structure that is not coarsely computable, and there is a coarsely computable structure that is not generically computable.

Σ_n coarsely c.e. structures

A structure A is Σ_n coarsely c.e. if there are a c.e. structure E and a dense set D such that the structure D with universe D is a Σ_n elementary substructure of both A and E and all relations and functions agree on D :

$$\mathcal{D} \preceq_n rac{\mathcal{A}}{\mathcal{E}}$$

- A Σ_0 coarsely c.e. structure is also called a *coarsely c.e.* structure.
- Clearly, a Σ_{n+1} coarsely c.e. structure is Σ_n coarsely c.e.

A coarsely computable structure is a coarsely c.e. structure.

Coarsely computable and Σ_1 coarsely c.e. injection structures

- Any generically computable injection structure has a coarsely computable copy.
- There is a generically computable injection structure that is not coarsely computable.

- There is a coarsely computable injection structure with no generically computable copy.
- *Proof idea*. Let $K \subseteq \omega \{0\}$ be a dense immune set.

Build an injection structure ${\mathcal A}$ with character

 $\{\langle k,i\rangle: k\in K\wedge 1\leq i\leq 2\}$ and no infinite orbits.

If \mathcal{B} were a generically computable copy of \mathcal{A} , then $\chi(\mathcal{A}) = \chi(\mathcal{B})$ would contain an infinite c.e. subset C.

Then $\{k : \langle k, 1 \rangle \in C \lor \langle k, 2 \rangle \in C\}$ is an infinite c.e. subset of K, a contradiction.

- There is an injection structure that does not have a coarsely computable copy.
- Proof idea. Build an infinite set $K \subseteq \omega$ such that an injection structure \mathcal{A} with character $\chi(\mathcal{A}) \subseteq K \times \{1\}$ cannot be coarsely computable.
- An injection structure $\mathcal{A} = (\omega, f)$ has a Σ_1 coarsely c.e. copy iff
 - (i) ${\cal A}$ has a computable copy iff
 - (ii) $\chi(\mathcal{A})$ is a c.e. set.

 Σ_n coarsely c.e. equivalence structures

- There is an equivalence structure with no Σ_1 coarsely c.e. copy.
- There is a Σ_1 coarsely c.e. equivalence structure with no Σ_1 generically c.e. copy.
- For any equivalence structure \mathcal{A} ,
 - \mathcal{A} is Σ_3 coarsely c.e. iff

 \mathcal{A} has a c.e. copy.

 Let A be an equivalence structure with an infinite class, or with a bounded character, or with an unbounded character that has a computable s₁-function.

Then \mathcal{A} has a Σ_2 coarsely c.e. copy iff $\chi(\mathcal{A})$ is Σ_2^0 iff

 \mathcal{A} has a c.e. copy.

• Let \mathcal{A} be an equivalence structure with no infinite classes, with an unbounded character with no computable s_1 -function.

Then \mathcal{A} has a Σ_2 coarsely c.e. copy iff

 $\chi(\mathcal{A})$ is Σ_2^0 and for some finite k, \mathcal{A} has infinitely many classes of size k.

THANK YOU!