Coarse computability, the density metric, and Hausdorff distances between Turing degrees

Denis R. Hirschfeldt

University of Chicago

Joint work with Carl G. Jockusch, Jr. and Paul E. Schupp

 $A \bigtriangleup B = \{n : A(n) \neq B(n)\}.$ $\delta(A, B) = \overline{\rho}(A \bigtriangleup B) = \limsup_{n \to \infty} \frac{|(A \bigtriangleup B) \cap [0, n)|}{n}.$

$$\delta(A,B) = \overline{\rho}(A \bigtriangleup B) = \limsup_n \frac{|(A \bigtriangleup B) \cap [0,n)|}{n}.$$

A and B are coarsely equivalent if $\delta(A, B) = 0$.

Let \mathcal{S} be the set of coarse equivalence classes.

 (\mathcal{S}, δ) is a metric space.

$$\delta(A,B) = \overline{\rho}(A \bigtriangleup B) = \limsup_{n \to \infty} \frac{|(A \bigtriangleup B) \cap [0,n)|}{n}.$$

A and B are coarsely equivalent if $\delta(A, B) = 0$.

Let ${\mathcal S}$ be the set of coarse equivalence classes.

 (\mathcal{S}, δ) is a metric space.

Thm (Blanchard, Formenti, and Kůrka). (S, δ) is not compact, but it is complete and path-connected.

$$\delta(A,B) = \overline{\rho}(A \bigtriangleup B) = \limsup_{n \to \infty} \frac{|(A \bigtriangleup B) \cap [0,n)|}{n}.$$

A and B are coarsely equivalent if $\delta(A, B) = 0$.

Let \mathcal{S} be the set of coarse equivalence classes.

 (\mathcal{S}, δ) is a metric space.

Thm (Blanchard, Formenti, and Kůrka). (S, δ) is not compact, but it is complete and path-connected.

Thm. (S, δ) is contractible and geodesic.

$$\delta(A,B) = \overline{\rho}(A \bigtriangleup B) = \limsup_{n \to \infty} \frac{|(A \bigtriangleup B) \cap [0,n)|}{n}.$$

A and B are coarsely equivalent if $\delta(A, B) = 0$.

Let \mathcal{S} be the set of coarse equivalence classes.

 (\mathcal{S}, δ) is a metric space.

Thm (Blanchard, Formenti, and Kůrka). (S, δ) is not compact, but it is complete and path-connected.

Thm. (S, δ) is contractible and geodesic.

The completeness of (S, δ) is equivalent over RCA₀ to the principle DOM, studied by Hölzl, Jain, Raghavan, Stephan, and Zhang.

Let [A] be the coarse equivalence class of A.

For $\mathcal{U} \subseteq 2^{\omega}$, let $[\mathcal{U}] = \{[A] : A \in \mathcal{U}\}.$

Let [A] be the coarse equivalence class of A.

For $\mathcal{U} \subseteq 2^{\omega}$, let $[\mathcal{U}] = \{[A] : A \in \mathcal{U}\}.$

Thm. If $\ensuremath{\mathcal{U}}$ is closed under Turing equivalence then TFAE:

- 1. $\left[\mathcal{U} \right]$ is connected.
- 2. $\left[\mathcal{U} \right]$ is path-connected.
- 3. $[\mathcal{U}]$ is contractible.
- 4. $\left[\mathcal{U} \right]$ is geodesic.
- 5. For every $X \in 2^{\omega}$ and $A \in \mathcal{U}$, there is a $B \in \mathcal{U}$ such that $A \leq_{\mathbf{T}} B$ and $X \leq_{\mathbf{T}} B'$.

Let [A] be the coarse equivalence class of A.

For $\mathcal{U} \subseteq 2^{\omega}$, let $[\mathcal{U}] = \{[A] : A \in \mathcal{U}\}.$

Thm. If $\ensuremath{\mathcal{U}}$ is closed under Turing equivalence then TFAE:

- 1. $\left[\mathcal{U} \right]$ is connected.
- 2. $\left[\mathcal{U} \right]$ is path-connected.
- 3. $[\mathcal{U}]$ is contractible.
- 4. $\left[\mathcal{U} \right]$ is geodesic.

5. For every $X \in 2^{\omega}$ and $A \in \mathcal{U}$, there is a $B \in \mathcal{U}$ such that $A \leq_{\mathbf{T}} B$ and $X \leq_{\mathbf{T}} B'$.

An example is $\mathcal{U} = \{Y : C \leq T \}$ for a noncomputable C.

The Hausdorff distance between $\mathcal{A}, \mathcal{B} \subseteq \mathcal{S}$ is $H(\mathcal{A}, \mathcal{B}) = \max(\sup\{\delta([A], \mathcal{B}) : [A] \in \mathcal{A}\}, \sup\{\delta([B], \mathcal{A}) : [B] \in \mathcal{B}\}).$

Since δ is bounded, *H* is a metric on the closed subsets of (S, δ) .

The Hausdorff distance between $\mathcal{A}, \mathcal{B} \subseteq \mathcal{S}$ is $H(\mathcal{A}, \mathcal{B}) = \max(\sup\{\delta([\mathcal{A}], \mathcal{B}) : [\mathcal{A}] \in \mathcal{A}\}, \sup\{\delta([\mathcal{B}], \mathcal{A}) : [\mathcal{B}] \in \mathcal{B}\}).$

Since δ is bounded, *H* is a metric on the closed subsets of (S, δ) .

Let **a**, **b** be Turing degrees.

Let $H(\mathbf{a}, \mathbf{b})$ be the distance between the closures of $[\mathbf{a}]$ and $[\mathbf{b}]$.

The Hausdorff distance between $\mathcal{A}, \mathcal{B} \subseteq \mathcal{S}$ is $H(\mathcal{A}, \mathcal{B}) = \max(\sup\{\delta([\mathcal{A}], \mathcal{B}) : [\mathcal{A}] \in \mathcal{A}\}, \sup\{\delta([\mathcal{B}], \mathcal{A}) : [\mathcal{B}] \in \mathcal{B}\}).$

Since δ is bounded, *H* is a metric on the closed subsets of (S, δ) .

Let **a**, **b** be Turing degrees.

Let $H(\mathbf{a}, \mathbf{b})$ be the distance between the closures of $[\mathbf{a}]$ and $[\mathbf{b}]$.

Let $\ensuremath{\mathcal{D}}$ be the set of Turing degrees.

Thm. $H(\mathbf{a}, \mathbf{b}) = 0$ iff $\mathbf{a} = \mathbf{b}$, so (\mathcal{D}, H) is a metric space.

The Hausdorff distance between $\mathcal{A}, \mathcal{B} \subseteq \mathcal{S}$ is $H(\mathcal{A}, \mathcal{B}) = \max(\sup\{\delta([\mathcal{A}], \mathcal{B}) : [\mathcal{A}] \in \mathcal{A}\}, \sup\{\delta([\mathcal{B}], \mathcal{A}) : [\mathcal{B}] \in \mathcal{B}\}).$

Since δ is bounded, *H* is a metric on the closed subsets of (S, δ) .

Let **a**, **b** be Turing degrees.

Let $H(\mathbf{a}, \mathbf{b})$ be the distance between the closures of $[\mathbf{a}]$ and $[\mathbf{b}]$.

Let \mathcal{D} be the set of Turing degrees.

Thm. $H(\mathbf{a}, \mathbf{b}) = 0$ iff $\mathbf{a} = \mathbf{b}$, so (\mathcal{D}, H) is a metric space.

We can understand this space better via the relativized form of the *coarse computability bound*.

$$\Gamma(\mathbf{a}) = \inf\{\gamma(A) : A \in \mathbf{a}\} = \inf\{\gamma(A) : A \leqslant_{\mathbf{T}} \mathbf{a}\}.$$

$$\Gamma(\mathbf{a}) = \inf\{\gamma(A) : A \in \mathbf{a}\} = \inf\{\gamma(A) : A \leqslant_{\mathbf{T}} \mathbf{a}\}.$$

 $\Gamma(\mathbf{a}) = 1$ iff $\mathbf{a} = \mathbf{0}$.

Thm (Hirschfeldt, Jockusch, McNicholl, and Schupp). If a is weakly 1-generic then $\Gamma(a) = 0$.

Thm (Andrews, Cai, Diamondstone, Jockusch, and Lempp). If **a** is 1-random and hyperimmune-free then $\Gamma(\mathbf{a}) = \frac{1}{2}$.

$$\Gamma(\mathbf{a}) = \inf\{\gamma(A) : A \in \mathbf{a}\} = \inf\{\gamma(A) : A \leqslant_{\mathbf{T}} \mathbf{a}\}.$$

 $\Gamma(\mathbf{a}) = 1$ iff $\mathbf{a} = \mathbf{0}$.

Thm (Hirschfeldt, Jockusch, McNicholl, and Schupp). If a is weakly 1-generic then $\Gamma(a) = 0$.

Thm (Andrews, Cai, Diamondstone, Jockusch, and Lempp). If **a** is 1-random and hyperimmune-free then $\Gamma(\mathbf{a}) = \frac{1}{2}$.

Thm (Monin). The only values of $\Gamma(\mathbf{a})$ are 0, $\frac{1}{2}$, and 1.

$$\Gamma(\mathbf{a}) = \inf\{\gamma(A) : A \in \mathbf{a}\} = \inf\{\gamma(A) : A \leqslant_{\mathbf{T}} \mathbf{a}\}.$$

 $\Gamma(\mathbf{a}) = 1$ iff $\mathbf{a} = \mathbf{0}$.

Thm (Hirschfeldt, Jockusch, McNicholl, and Schupp). If a is weakly 1-generic then $\Gamma(a) = 0$.

Thm (Andrews, Cai, Diamondstone, Jockusch, and Lempp). If **a** is 1-random and hyperimmune-free then $\Gamma(\mathbf{a}) = \frac{1}{2}$.

Thm (Monin). The only values of $\Gamma(\mathbf{a})$ are 0, $\frac{1}{2}$, and 1.

 $\gamma(A)$ and $\Gamma(\mathbf{a})$ can be relativized to $\gamma_{\mathbf{d}}(A)$ and $\Gamma_{\mathbf{d}}(\mathbf{a})$.

$$\Gamma(\mathbf{a}) = \inf\{\gamma(A) : A \in \mathbf{a}\} = \inf\{\gamma(A) : A \leqslant_{\mathbf{T}} \mathbf{a}\}.$$

 $\Gamma(\mathbf{a}) = 1$ iff $\mathbf{a} = \mathbf{0}$.

Thm (Hirschfeldt, Jockusch, McNicholl, and Schupp). If a is weakly 1-generic then $\Gamma(a) = 0$.

Thm (Andrews, Cai, Diamondstone, Jockusch, and Lempp). If **a** is 1-random and hyperimmune-free then $\Gamma(\mathbf{a}) = \frac{1}{2}$.

Thm (Monin). The only values of $\Gamma(\mathbf{a})$ are 0, $\frac{1}{2}$, and 1.

 $\gamma(A)$ and $\Gamma(\mathbf{a})$ can be relativized to $\gamma_{\mathbf{d}}(A)$ and $\Gamma_{\mathbf{d}}(\mathbf{a})$.

Thm (after Monin). The only values of $\Gamma_d(\mathbf{a})$ are 0, $\frac{1}{2}$, and 1.

Cor. (\mathcal{D}, H) is a $(0, \frac{1}{2}, 1)$ -valued metric space.

Cor. (\mathcal{D}, H) is a $(0, \frac{1}{2}, 1)$ -valued metric space.

If **b** is weakly 1-generic relative to **a** then $H(\mathbf{a}, \mathbf{b}) = 1$.

If **a** and **b** are relatively 1-random then $H(\mathbf{a}, \mathbf{b}) = \frac{1}{2}$.

Cor. (\mathcal{D}, H) is a $(0, \frac{1}{2}, 1)$ -valued metric space.

If **b** is weakly 1-generic relative to **a** then $H(\mathbf{a}, \mathbf{b}) = 1$.

If **a** and **b** are relatively 1-random then $H(\mathbf{a}, \mathbf{b}) = \frac{1}{2}$.

Let $a.e. \equiv$ "for almost every" and $c.m. \equiv$ "for comeager many".

 $(\forall \mathbf{a})(\mathsf{c.m. b})[H(\mathbf{a},\mathbf{b})=1].$

 $(a.e. a)(a.e. b)[H(a, b) = \frac{1}{2}].$

Cor. (\mathcal{D}, H) is a $(0, \frac{1}{2}, 1)$ -valued metric space.

If **b** is weakly 1-generic relative to **a** then $H(\mathbf{a}, \mathbf{b}) = 1$.

If **a** and **b** are relatively 1-random then $H(\mathbf{a}, \mathbf{b}) = \frac{1}{2}$.

Let $a.e. \equiv$ "for almost every" and $c.m. \equiv$ "for comeager many".

 $(\forall \mathbf{a})(\mathsf{c.m. b})[H(\mathbf{a},\mathbf{b})=1].$

 $(a.e. a)(a.e. b)[H(a, b) = \frac{1}{2}].$

a is *attractive* if $(a.e. \mathbf{b})[H(\mathbf{a}, \mathbf{b}) = \frac{1}{2}]$, and *dispersive* otherwise.

For example, 1-randoms are attractive, by van Lambalgen's Theorem.

Thm. If **a** is c.e. and low, then almost every set computes a set that is weakly 1-generic relative to **a**, and hence **a** is dispersive.

Thm. If \mathbf{a} is c.e. and low, then almost every set computes a set that is weakly 1-generic relative to \mathbf{a} , and hence \mathbf{a} is dispersive.

Thm. If **a** is weakly 2-generic and **b** is 2-random then **b** computes a set that is weakly 1-generic relative to **a**, and hence $H(\mathbf{a}, \mathbf{b}) = 1$.

Thm. If \mathbf{a} is c.e. and low, then almost every set computes a set that is weakly 1-generic relative to \mathbf{a} , and hence \mathbf{a} is dispersive.

Thm. If **a** is weakly 2-generic and **b** is 2-random then **b** computes a set that is weakly 1-generic relative to **a**, and hence $H(\mathbf{a}, \mathbf{b}) = 1$.

Cor. If a is weakly 2-generic then it is dispersive.

Cor. (c.m. a)(a.e. b)[H(a, b) = 1].

Thm. If **a** is c.e. and low, then almost every set computes a set that is weakly 1-generic relative to **a**, and hence **a** is dispersive.

Thm. If **a** is weakly 2-generic and **b** is 2-random then **b** computes a set that is weakly 1-generic relative to **a**, and hence $H(\mathbf{a}, \mathbf{b}) = 1$.

Cor. If a is weakly 2-generic then it is dispersive.

Cor. (c.m. a)(a.e. b)[H(a, b) = 1].

The last theorem cannot be improved to weak 2-randomness, but we do know whether it can be improved to 1-genericity.

Open Question. Is every 1-generic degree dispersive?

Let $G_{\mathcal{M}}$ be the graph with vertices the points in \mathcal{M} , and an edge between x and y iff their distance is 1.

A graph (V, E) is a *comparability graph* if there is a partial order (V, \prec) s.t. E(x, y) iff $x \prec y$ or $y \prec x$.

Let G_M be the graph with vertices the points in M, and an edge between x and y iff their distance is 1.

A graph (V, E) is a *comparability graph* if there is a partial order (V, \prec) s.t. E(x, y) iff $x \prec y$ or $y \prec x$.

Thm. If \mathcal{M} is countable and $G_{\mathcal{M}}$ is a comparability graph, then \mathcal{M} is isometrically embeddable in (\mathcal{D}, H) .

Let G_M be the graph with vertices the points in M, and an edge between x and y iff their distance is 1.

A graph (V, E) is a *comparability graph* if there is a partial order (V, \prec) s.t. E(x, y) iff $x \prec y$ or $y \prec x$.

Thm. If \mathcal{M} is countable and $G_{\mathcal{M}}$ is a comparability graph, then \mathcal{M} is isometrically embeddable in (\mathcal{D}, H) .

We do not know what other countable $(0, \frac{1}{2}, 1)$ -valued metric spaces (if any) are isometrically embeddable in (\mathcal{D}, H) .

Let G_M be the graph with vertices the points in M, and an edge between x and y iff their distance is 1.

A graph (V, E) is a *comparability graph* if there is a partial order (V, \prec) s.t. E(x, y) iff $x \prec y$ or $y \prec x$.

Thm. If \mathcal{M} is countable and $G_{\mathcal{M}}$ is a comparability graph, then \mathcal{M} is isometrically embeddable in (\mathcal{D}, H) .

We do not know what other countable $(0, \frac{1}{2}, 1)$ -valued metric spaces (if any) are isometrically embeddable in (\mathcal{D}, H) .

Let \mathcal{M} be s.t. $G_{\mathcal{M}}$ is a cycle of length 5.

Open Question. Is \mathcal{M} isometrically embeddable in (\mathcal{D}, H) ?

Thm. (S, δ) is geodesic.

In the proof, it is useful to have a family of size continuum of sets of density $\frac{1}{2}$ that are pairwise not coarsely equivalent, where A has density $\frac{1}{2}$ if $\lim_{n} \frac{|A \cap [0,n)|}{n} = \frac{1}{2}$.

In the proof, it is useful to have a family of size continuum of sets of density $\frac{1}{2}$ that are pairwise not coarsely equivalent, where A has density $\frac{1}{2}$ if $\lim_{n} \frac{|A \cap [0,n)|}{n} = \frac{1}{2}$.

A perfect tree is a $T: 2^{<\omega} \to 2^{<\omega}$ s.t. $T(\sigma 0)$ and $T(\sigma 1)$ are incompatible extensions of $T(\sigma)$.

P is a *path* on *T* if $P = \bigcup_{\sigma \prec A} T(\sigma)$ for some $A \in 2^{\omega}$. Note that $P \oplus T \equiv_{\mathbf{T}} A \oplus T$.

In the proof, it is useful to have a family of size continuum of sets of density $\frac{1}{2}$ that are pairwise not coarsely equivalent, where A has density $\frac{1}{2}$ if $\lim_{n} \frac{|A \cap [0,n)|}{n} = \frac{1}{2}$.

A perfect tree is a $T: 2^{<\omega} \to 2^{<\omega}$ s.t. $T(\sigma 0)$ and $T(\sigma 1)$ are incompatible extensions of $T(\sigma)$.

P is a *path* on *T* if $P = \bigcup_{\sigma \prec A} T(\sigma)$ for some $A \in 2^{\omega}$. Note that $P \oplus T \equiv_{\mathbf{T}} A \oplus T$.

Thm. There is a computable perfect tree such that each path has density $\frac{1}{2}$, as does the symmetric difference of any two distinct paths.

Thm. (S, δ) is geodesic. Indeed, there are continuum many geodesics between any two distinct points.

In the proof, it is useful to have a family of size continuum of sets of density $\frac{1}{2}$ that are pairwise not coarsely equivalent, where A has density $\frac{1}{2}$ if $\lim_{n} \frac{|A \cap [0,n)|}{n} = \frac{1}{2}$.

A perfect tree is a $T: 2^{<\omega} \to 2^{<\omega}$ s.t. $T(\sigma 0)$ and $T(\sigma 1)$ are incompatible extensions of $T(\sigma)$.

P is a *path* on *T* if $P = \bigcup_{\sigma \prec A} T(\sigma)$ for some $A \in 2^{\omega}$. Note that $P \oplus T \equiv_{\mathbf{T}} A \oplus T$.

Thm. There is a computable perfect tree such that each path has density $\frac{1}{2}$, as does the symmetric difference of any two distinct paths.

A related question: Is there a perfect tree of pairwise relatively 1-random sets?

Thm. If \mathcal{U} is closed under Turing equivalence then TFAE:

- 1. $[\mathcal{U}]$ is connected.
- 2. $\left[\mathcal{U} \right]$ is path-connected.
- 3. $[\mathcal{U}]$ is contractible.
- 4. $[\mathcal{U}]$ is geodesic.

5. For every $X \in 2^{\omega}$ and $A \in \mathcal{U}$, there is a $B \in \mathcal{U}$ such that $A \leqslant_{\mathbf{T}} B$ and $X \leqslant_{\mathbf{T}} B'$.

An example is $\mathcal{U} = \{Y : C \leq T \}$ for a noncomputable C.

Thm. If \mathcal{U} is closed under Turing equivalence then TFAE:

- 1. $\left[\mathcal{U} \right]$ is connected.
- 2. $\left[\mathcal{U} \right]$ is path-connected.
- 3. $[\mathcal{U}]$ is contractible.
- 4. $[\mathcal{U}]$ is geodesic.
- 5. For every $X \in 2^{\omega}$ and $A \in \mathcal{U}$, there is a $B \in \mathcal{U}$ such that $A \leqslant_{\mathbf{T}} B$ and $X \leqslant_{\mathbf{T}} B'$.

An example is $\mathcal{U} = \{Y : C \leq T \}$ for a noncomputable C.

If \mathcal{U} is a Turing ideal, then 5 becomes: for every X there is a $B \in \mathcal{U}$ s.t. $X \leq_{\mathbb{T}} B'$, i.e., \mathcal{U} is *jump cofinal*.

Thm. If \mathcal{U} is closed under Turing equivalence then TFAE:

- 1. $[\mathcal{U}]$ is connected.
- 2. $\left[\mathcal{U} \right]$ is path-connected.
- 3. $[\mathcal{U}]$ is contractible.
- 4. $[\mathcal{U}]$ is geodesic.
- 5. For every $X \in 2^{\omega}$ and $A \in \mathcal{U}$, there is a $B \in \mathcal{U}$ such that $A \leqslant_{\mathbf{T}} B$ and $X \leqslant_{\mathbf{T}} B'$.

An example is $\mathcal{U} = \{Y : C \leq T \}$ for a noncomputable C.

If \mathcal{U} is a Turing ideal, then 5 becomes: for every X there is a $B \in \mathcal{U}$ s.t. $X \leq_{T} B'$, i.e., \mathcal{U} is *jump cofinal*.

How do we obtain ideals that are jump-cofinal but not cofinal?

The ideal generated by the paths on T is jump-cofinal but not cofinal.

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a \emptyset' -computable perfect tree such that every join of finitely many distinct paths is 1-generic.

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a \emptyset' -computable perfect tree such that every join of finitely many distinct paths is 1-generic.

Can we do the same using 1-randomness?

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a \emptyset' -computable perfect tree such that every join of finitely many distinct paths is 1-generic.

Can we do the same using 1-randomness?

Let $(A)^n$ be the set of ordered *n*-tuples of distinct elements of A.

Thm (Mycielski). Let $(\mathcal{R}_i \subseteq (2^{\omega})^{n_i})_{i \in \omega}$ be s.t. each \mathcal{R}_i has measure 1. There is a nonempty perfect $\mathcal{C} \subseteq 2^{\omega}$ s.t. $(\mathcal{C})^{n_i} \subseteq \mathcal{R}_i$ for all *i*.

The ideal generated by the paths on T is jump-cofinal but not cofinal.

We can build such a T directly, or build a \emptyset' -computable perfect tree such that every join of finitely many distinct paths is 1-generic.

Can we do the same using 1-randomness?

Let $(A)^n$ be the set of ordered *n*-tuples of distinct elements of A.

Thm (Mycielski). Let $(\mathcal{R}_i \subseteq (2^{\omega})^{n_i})_{i \in \omega}$ be s.t. each \mathcal{R}_i has measure 1. There is a nonempty perfect $\mathcal{C} \subseteq 2^{\omega}$ s.t. $(\mathcal{C})^{n_i} \subseteq \mathcal{R}_i$ for all *i*.

Miller and Yu gave a direct construction of a perfect tree such that every join of finitely many distinct paths is 1-random, and showed how its relativized version yields a proof of Mycielski's Theorem.

This construction allows us to state a version of Mycielski's Theorem that is provable in ACA_0 .

This construction allows us to state a version of Mycielski's Theorem that is provable in ACA_0 .

If a set is sufficiently generic, then it computes a perfect tree such that every join of finitely many distinct paths is 1-generic.

This construction allows us to state a version of Mycielski's Theorem that is provable in ACA_0 .

If a set is sufficiently generic, then it computes a perfect tree such that every join of finitely many distinct paths is 1-generic.

Thm. If a degree has a strong minimal cover then it does not compute any perfect tree all of whose paths are 1-random.

Thm (Barmpalias and Lewis). Every 2-random degree has a strong minimal cover.

Cor. No 2-random computes a perfect tree all of whose paths are 1-random.