HYP with Finite Mind-Changes: On Kechris-Martin Theorem and a Solution to Fournier's Question

Takayuki Kihara¹

Nagoya University, Japan

Oberwolfach Workshop: Computability Theory 2021 April 27, 2021

¹partially supported by JSPS KAKENHI Grant 19K03602, and the JSPS-RFBR Bilateral Joint Research Project JPJSBP120204809

Takayuki Kihara (Nagoya) HYP with Finite Mind-Changes

Theorem (Kechris-Martin 197x?)

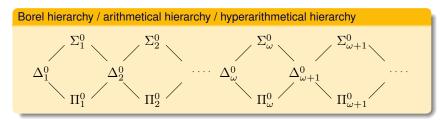
Under the axiom of determinacy (AD), the Wadge rank of the ω -th level of the decreasing difference hierarchy over $\prod_{i=1}^{1}$ is ω_2 .

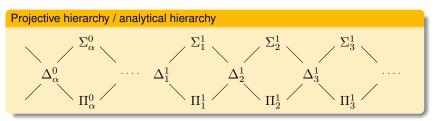
Kechris and Martin have located the pointclass Γ such that $o(\Delta) = \omega_2$ with the aid of Theorem 1.2. Namely, let Γ be the class of $\omega - \mathbf{\Pi}_1^1$ sets, that is, sets of the form

$$A = \bigcup_{n < \omega} A_{2n} - A_{2n+1}$$

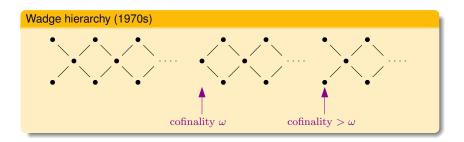
where $\langle A_n : n < \omega \rangle$ is a decreasing sequence of Π_1^1 sets. Then Γ is nonselfdual, and both Γ and $\check{\Gamma}$ are closed under intersections with Π_1^1 sets. By Theorem 1.2 we have $o(\Delta) \ge \omega_2$. By analyzing the ordinal games associated to Wadge games involving sets in Δ , Martin showed $o(\Delta) \le \omega_2$. Thus $o(\Delta) = \omega_2$.

 J. Steel, Closure properties of pointclasses, In Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II.





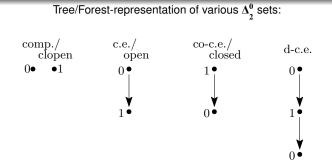
$$\begin{array}{ll} \Delta_1^0 = \text{clopen}; & \Sigma_1^0 = \text{open}; & \Pi_1^0 = \text{closed}; & \Sigma_2^0 = F_\sigma; & \Pi_2^0 = G_\delta; \\ \Delta_1^1 = \text{Borel}; & \Sigma_1^1 = \text{analytic}; & \Pi_1^1 = \text{coanalytic} \end{array}$$



• Wadge degree: Ultimate measure for topological complexity Let X and Y be topological spaces, $A \subseteq X$ and $B \subseteq Y$,

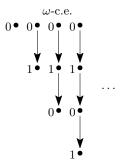
$$A \leq_W B \iff \exists \text{ continuous } \theta \colon X \to Y$$
$$\forall x \in X \quad [x \in A \iff \theta(x) \in B]$$

- $A <_W B \iff B$ is topologically more complicated than A.
- (AD) The subsets of ω^{ω} are semi-well-ordered by \leq_W .
- This assigns an ordinal rank to each subset of ω^{ω} .



- (computable/clopen) Given an input x, effectively decide $x \notin A$ (indicated by 0) or $x \in A$ (indicated by 1).
- (c.e./open) Given an input x, begin with x ∉ A (indicated by 0) and later x can be enumerated into A (indicated by 1).
- (co-c.e./closed) Given an input x, begin with x ∈ A (indicated by 1) and later x can be removed from A (indicated by 0).
- (d-c.e.) Begin with x ∉ A (indicated by 0), later x can be enumerated into A (indicated by 1), and x can be removed from A again (indicated by 0).

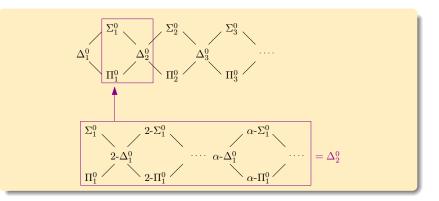
Forest-representation of a complete ω -c.e. set:

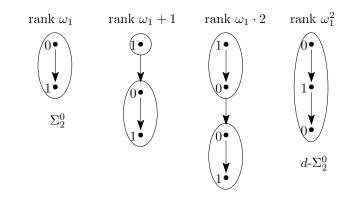


(ω -c.e.) The representation of " ω -c.e." is a forest consists of linear orders of finite length (a linear order of length n + 1 represents "n-c.e.").

 Given an input x, effectively choose a number n ∈ ω giving a bound of the number of times of mind-changes until deciding x ∈ A.

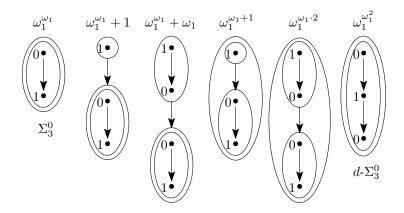
- The term 0, $1 = \emptyset$, ω^{ω} , resp. = rank 0
- The term $0 \rightarrow 1 = \text{Open};$ $1 \rightarrow 0 = \text{Closed.}$ (rank 1)
- The term $0 \rightarrow 1 \rightarrow 0$: Difference of two open sets (rank 2)
- The term $0 \rightarrow 1 \rightarrow 0 \rightarrow 1$: Difference of three open sets (rank 3)
- Boolean combination of finitely many open sets (rank finite)
- The α -th level of the difference hierarchy (rank α)





Tree/Forest-representation of $\underline{\Delta}_3^0$ sets

The Wadge degrees of $\underline{\mathbb{A}}_3^0$ sets are exactly those represented by forests labeled by trees.



Tree/Forest-representation of Δ_{4}^{0} sets

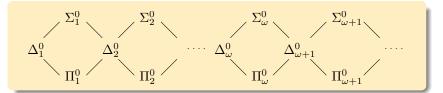
The Wadge degrees of $\underline{\Delta}_4^0$ sets are exactly those represented by forests labeled by trees which are labeled by trees.

Term operation vs Ordinal operation $\rightarrow \approx +; \quad \sqcup \approx \sup; \quad \langle \bullet \rangle \approx \omega_1^{\bullet}$

- The term $\langle 0^{\rightarrow}1\rangle = \Sigma_2^0$; $\langle 1^{\rightarrow}0\rangle = \Pi_2^0$ (rank ω_1)
- The term $\langle \langle 0^{\rightarrow} 1 \rangle \rangle = \Sigma_3^0$; $\langle \langle 1^{\rightarrow} 0 \rangle \rangle = \Pi_3^0$ (rank $\omega_1^{\omega_1}$)
- The term $\langle \langle \langle \mathbf{0}^{\rightarrow} \mathbf{1} \rangle \rangle \rangle = \Sigma_4^0; \quad \langle \langle \langle \mathbf{1}^{\rightarrow} \mathbf{0} \rangle \rangle \rangle = \Pi_4^0 \quad (\operatorname{rank} \omega_1^{\omega_1^{\omega_1}})$

Let $\omega_1 \uparrow \uparrow n$ be the *n*-th level of the exponential tower over ω_1 .

• The term
$$\langle 0 \rightarrow 1 \rangle^n = \sum_{n+1}^0$$
; $\langle 1 \rightarrow 0 \rangle^n = \prod_{n+1}^0$ (rank $\omega_1 \uparrow \uparrow n$)



What's the rank of \sum_{α}^{0} sets? Is it $\sup_{n < \omega} (\omega_1 \uparrow \uparrow n)$? No!!

•
$$\varepsilon_{\omega_1+\alpha}$$
 = the α -th solution of " $\omega_1^x = x$ ".

•
$$\varepsilon_{\omega_1+1} = \sup_{n < \omega} (\omega_1 \uparrow \uparrow n)$$

Theorem (Wadge)

The Wadge rank of $\sum_{\alpha}^{0} \omega$ sets is $\varepsilon_{\omega_1 + \omega_1}$.

Why? Term presentation:

- The term $(0 \rightarrow 1)^n$ represents $\sum_{n=1}^0$ (rank $\omega_1 \uparrow \uparrow n$)
- The term ⊔_{n<ω} (0→1)ⁿ represents a disjoint union of Σ⁰_n sets (rank ε_{ω1+1})
- The term 1[→] ⊔_{n<ω} (0[→]1)ⁿ represents a more complicated set which is still in Δ⁰_ω (rank ε_{ω1+1} + 1)
- The term $\langle 1^{\rightarrow} \sqcup_{n < \omega} \langle 0^{\rightarrow} 1 \rangle^n \rangle$ corresponds to rank $\omega_1^{\varepsilon_{\omega_1+1}+1}$
- The term $\sqcup_{m < \omega} \langle 1^{\rightarrow} \sqcup_{n < \omega} \langle 0^{\rightarrow} 1 \rangle^n \rangle^m$ corresponds to rank $\varepsilon_{\omega_1 + 2}$
- The term $\langle 0^{\rightarrow}1\rangle^{\omega}$ represents Σ^{0}_{ω} (rank $\varepsilon_{\omega_{1}+\omega_{1}}$)

- The term $\langle 0^{\rightarrow} \langle 1^{\rightarrow} 0 \rangle^{\omega} \rangle$ = rank $\omega_1^{\varepsilon_{\omega_1,2}+1}$
- The term $(0^{\rightarrow}1^{\rightarrow}0)^{\omega}$ represents d- Σ_{ω}^{0} (rank $\varepsilon_{\omega_{1},3}$)
- The term $\langle \langle 0^{\rightarrow} 1 \rangle \rangle^{\omega}$ represents $\sum_{\omega=1}^{0}$ (rank $\varepsilon_{\omega_1^2}$)
- The term $\langle \langle 0^{\rightarrow}1 \rangle^n \rangle^{\omega}$ represents $\Sigma^0_{\omega+n}$ (rank $\varepsilon_{\omega_1\uparrow\uparrow n}$)
- The term $\langle \langle 0^{\rightarrow}1 \rangle^{\omega} \rangle^{\omega}$ represents $\sum_{\omega \geq 2}^{0}$ (rank $\varepsilon_{\varepsilon_{\omega_{1}+\omega_{1}}}$)
- The term $\langle \langle 0^{\rightarrow}1 \rangle^n \rangle^{\omega \cdot m}$ represents $\sum_{\omega \cdot m+n}^0$ (rank $\phi_1^{(m)}(\phi_0^{(n)}(0))$)

Here $\phi_0(x) = \omega_1^{1+x}$ and $\phi_1(x) = \varepsilon_{\omega_1+1+x}$. Define $\phi_2(x)$ as the *x*-th solution of " $\phi_1(x) = x$ ".

- The term $\sqcup_{n < \omega} \langle 0 \rightarrow 1 \rangle^{\omega \cdot n} = \operatorname{rank} \phi_2(0) = \sup_{n < \omega} \phi_1^{(n)}(0)$
- The term $\langle 1^{\rightarrow} \sqcup_{n < \omega} \langle 0^{\rightarrow} 1 \rangle^{\omega \cdot n} \rangle$ = rank $\phi_0(\phi_2(0) + 1)$
- The term $\sqcup_{m < \omega} \langle 1^{\rightarrow} \sqcup_{n < \omega} \langle 0^{\rightarrow} 1 \rangle^{\omega \cdot n} \rangle^{\omega \cdot m} = \phi_2(1)$
- The term $\langle 0^{\rightarrow}1\rangle^{\omega^2}$ represents $\Sigma^0_{\omega^2}$ (rank $\phi_2(\omega_1)$)

Fact (for sets, essentially due to Duparc? K.-Montalbán for more general cases)

The Wadge degrees of Borel sets

= The terms in the signature $\mathcal{L} = \{0, 1, \rightarrow, \sqcup, \langle \cdot \rangle^{\omega^{\alpha}} : \alpha < \omega_1\}.$

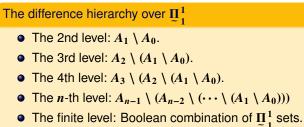
Term operation vs Ordinal operation

 $\rightarrow \approx +; \ \sqcup \approx \sup; \ \langle \bullet \rangle \approx \omega_1^{\bullet} = \phi_0(\bullet); \ \langle \bullet \rangle^{\omega^{\alpha}} \approx \phi_{\alpha}(\bullet)$

Example

- (Wadge) The Veblen hierarchy of base ω₁:
 φ_α(γ): the γth ordinal closed under +, sup_{n∈ω}, and (φ_β)_{β<α}.
- ϕ_0 enumerates $\omega_1, \omega_1^2, \omega_1^3, \dots, \omega_1^{\omega+1}, \omega_1^{\omega+2}, \dots$
- ϕ_1 enumerates $\varepsilon_{\omega_1+1}, \varepsilon_{\omega_1+2}, \varepsilon_{\omega_1+3}, \ldots$
- $\sum_{\alpha}^{0} \omega^{\alpha}$, $\prod_{\alpha}^{0} \omega^{\alpha}$: Wadge-rank $\phi_{\alpha}(\omega_{1})$ ($0 < \alpha < \omega_{1}$).
- $\sum_{i=1}^{1}$, $\prod_{i=1}^{1}$: Wadge-rank $\phi_{\omega_1}(0) = \sup_{\xi < \omega_1} \phi_{\xi}(\omega_1)$.

Beyond Borel:



One may assume that (A_n) is an increasing seq. of Π_1^1 sets:

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{n-2} \subseteq A_{n-1} \subseteq A_n \subseteq \omega^{\omega}$$

$$1 \leftarrow 0 \leftarrow 1 \leftarrow \dots \leftarrow 1 \leftarrow 0 \leftarrow 1 \leftarrow 0$$

Its transfinite extension is called the *increasing difference hierarchy* over $\prod_{i=1}^{1}$.

Recall: The Wadge rank of Borel sets = $\phi_{\omega_1}(0)$.

Theorem (Fournier 2016, AD)

- The Wadge rank of the (1 + η)-th level of the increasing difference hierarchy over Π¹₁ is φ_{ω1}(η).
- In particular, the Wadge rank of the increasing difference hierarchy over Π¹₁ is φ_{ω1}(ω1).

Theorem (Kechris-Martin 197x?)

Under the axiom of determinacy (AD), the Wadge rank of the ω -th level of the decreasing difference hierarchy over $\prod_{i=1}^{1}$ is ω_2 .

Kechris and Martin have located the pointclass Γ such that $o(\Delta) = \omega_2$ with the aid of Theorem 1.2. Namely, let Γ be the class of $\omega - \mathbf{\Pi}_1^1$ sets, that is, sets of the form

$$A = \bigcup_{n < \omega} A_{2n} - A_{2n+1}$$

where $\langle A_n : n < \omega \rangle$ is a decreasing sequence of Π_1^1 sets. Then Γ is nonselfdual, and both Γ and $\check{\Gamma}$ are closed under intersections with Π_1^1 sets. By Theorem 1.2 we have $o(\Delta) \ge \omega_2$. By analyzing the ordinal games associated to Wadge games involving sets in Δ , Martin showed $o(\Delta) \le \omega_2$. Thus $o(\Delta) = \omega_2$.

 J. Steel, Closure properties of pointclasses, In Wadge Degrees and Projective Ordinals: The Cabal Seminar, Volume II.

- $D_{\eta}(\prod_{i=1}^{1})$: The η -th level of the increasing DH.
- $Diff_{\omega_1}(\prod_{i=1}^{1})$: The whole increasing DH.
- $D_n^*(\prod_{i=1}^1)$: The η -th level of the decreasing DH.
- $Diff^*_{\omega_1}(\Pi^1_1)$: The whole decreasing DH.

Define $Diff_{\eta}(\Pi_{1}^{1})$ as the class of all A s.t. $A, \neg A \in D_{\eta}(\Pi_{1}^{1})$.

$$D_n(\Pi_1^1) = D_n^*(\Pi_1^1) \subset \cdots \subset D_\eta(\Pi_1^1) \subset \cdots \subset Diff_{\omega_1}(\Pi_1^1) \subset Diff_{\omega}^*(\Pi_1^1) \subset \cdots$$

- (Fournier 2016, AD) The Wadge rank of $D_{1+\eta}(\prod_{i=1}^{1})$ is $\phi_{\omega_1}(\eta)$.
- (Kechris-Martin, AD) The Wadge rank of $Diff^*_{\omega}(\prod_{i=1}^{1})$ is ω_2 .

Question (Fournier 2016)

If weakening AD, is $Diff_{\omega_1}(\prod_{i=1}^1) = Diff^*_{\omega}(\prod_{i=1}^1)$ consistent?

Two difference hierarchies (DHs)

Increasing difference hierarchy:

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots \subseteq A_{n-2} \subseteq A_{n-1} \subseteq A_n \subseteq \omega^{\omega}$$

 $1 \leftarrow 0 \leftarrow 1 \leftarrow \dots \leftarrow 1 \leftarrow 0 \leftarrow 1 \leftarrow 0$

Decreasing difference hierarchy:

$$\omega^{\omega} \supseteq B_0 \supseteq B_1 \supseteq B_2 \supseteq \cdots \supseteq B_{n-2} \supseteq B_{n-1} \supseteq B_n$$

- The increasing DH over \sum_{α}^{0} = The decreasing DH over \sum_{α}^{0} .
- Finite levels of increasing DH = finite levels of decreasing DH.
- The increasing DH over $\underline{\Pi}_{1}^{1} \neq$ The decreasing DH over $\underline{\Pi}_{1}^{1} \parallel \parallel$

Observation by Gandy, Spector, Kreisel, Sacks, ... (1959~1960s)

 $\Delta_1^1 : \Pi_1^1 : \Sigma_1^1 \approx \text{ finite : c.e. : co-c.e.}$

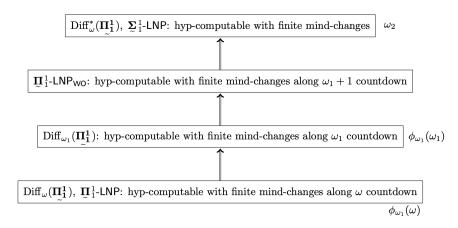
We call Π_1^1 hyp c.e. and Σ_1^1 hyp co-c.e.

Rough Idea

 Diff_{ω1}(Π¹): hyp-computability with finite mind-changes, but with a mind-change countdown starting from < ω₁, i.e.,

change the current guess \implies decrease the value of the counter

• $Diff^*_{\omega}(\prod_{1}^{1})$: hyp-computability with finite mind-changes



Example of hyp-computability with finite mind-changes: Let's consider the following principle in a β -model.

 Σ_1^1 -least number principle

Given a Σ_1^1 formula $\varphi(x)$, if $\forall n \neg \varphi(n)$ is false, then there is a least number $n \in \mathbb{N}$ satisfying $\varphi(n)$.

In other words, "if a Σ_1^1 set $S \subseteq \mathbb{N}$ is nonempty, then min S exists".

How is it difficult to calculate $\min S$? The Σ_1^1 -least number principle can be restated as:

"If a hyp co-c.e. set $S \subseteq \mathbb{N}$ is nonempty, then min S exists".

How is it difficult to calculate min S?

One can calculate **min** *S* by a "*hyp-computation process with finite mind-changes*".

"If a hyp co-c.e. set $S \subseteq \mathbb{N}$ is nonempty, then min S exists".

Calculate min S by a "hyp-computation process with finite mind-changes".

- Fix a hyp-computation process Φ enumerating $\mathbb{N} \setminus S$.
- Our "hyp-algorithm" Ψ first guess that 0 is the right answer.
- After some hyp-computation steps, Φ may enumerate 0 (so $0 \notin S$).
- In this case, our hyp-algorithm Ψ changes the guess to the least number n which has not been enumerated by Φ by this stage.
- After some hyp-computation steps, Φ may enumerate n (so $n \notin S$).
- In this case, our hyp-algorithm Ψ changes the guess to the least number n' which has not been enumerated by Φ by this stage.

Continue this procedure...

 Since S is nonempty, Ψ's guess stabilizes after some finite mind-changes.

In a certain sense, the strength of the Σ_1^1 -least number principle is equivalent to "hyp-computability with finite mind-changes".

$Σ_1^1$ -least number principle "If a hyp co-c.e. set *S* ⊆ ℕ is nonempty, then min *S* exists".

 \Rightarrow This is hyp-computable with finite mind-changes $\approx Diff^*_{\omega}(\Pi^1)$

Π_{I}^{1} -least number principle "If a hyp c.e. set $S \subseteq \mathbb{N}$ is nonempty, then min S exists".

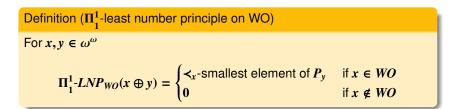
⇒ This is hyp-computable with finite mind-changes along an ω -countdown ≈ $Diff_{\omega}(\prod_{1}^{1})$

Π_1^1 -least number principle on WO

"If a hyp c.e. set $S \subseteq \mathbb{N}$ is nonempty, and if \prec is a well-order on \mathbb{N} then $\min_{\prec} S$ exists".

⇒ If the order-type of ≺ is η , then this is hyp-computable with finite mind-changes along an η -countdown ≈ $Diff_{\eta}(\Pi_{1}^{1})$

- For $y \in \omega^{\omega}$ let P_y be the $\prod_{i=1}^{1}$ subset of \mathbb{N} coded by y.
- If $x \in WO$ let \prec_x be the well-order on \mathbb{N} coded by x.



This way of thinking solves Fournier's question.

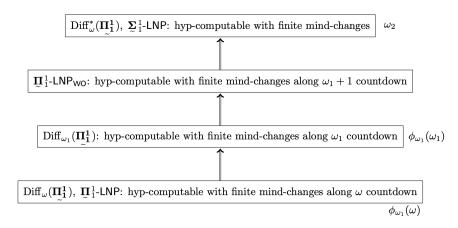
- As usual, there exists a hierarchy of hyp-computability with finite mind-changes, but with ordinal mind-change countdowns.
- Surprisingly, a value of a mind-change counter can exceed ω₁!!! (without any set-theoretic assumption)

 Π_1^1 -*LNP_{WO}* is hyp-computable with finite mind-changes with $(\omega_1 + 1)$ -countdown.

$$\Pi_1^1 \text{-}LNP_{WO}(x \oplus y) = \begin{cases} \prec_x \text{-smallest element of } P_y & \text{if } x \in WO \\ 0 & \text{if } x \notin WO \end{cases}$$

Theorem: Π_1^1 -least number principle on **WO**

- Begin with any guess and ordinal counter $\omega_1 < \omega_1 + 1$.
- If a given x is found to be WO, then change the ordinal counter to the order type of x, which is smaller than ω₁.
- When something is first enumerated into P_y, we guess the ≺_x-least element α ∈ P_y and change the ordinal counter to α.
- If something smaller than the previous guess is enumerated into P_y, then change the guess as above. Continue this procedure.
- This procedure is hyp-computable with finite mind changes along ordinal counter ω₁ + 1.
- This is clearly intermediate between $Diff_{\omega_1}(\Pi_1^1)$ and $Diff_{\omega}^*(\Pi_1^1)$.



- *Diff*_α(<u>Π</u>¹): hyp-computability with finite mind-changes with countdown from α.
- $Diff_{\omega_1}(\prod_{i=1}^1) \subsetneq Diff^*_{\omega}(\prod_{i=1}^1)$: α is not necessarily a countable ordinal.
- $Diff^*_{\beta}(\prod_{i=1}^{1})$: hyp-computability with at most β mind-changes.
- Again, is β not necessarily a countable ordinal?

Higher limit lemma (Monin)

The following are equivalent for a set $A \subseteq \omega$:

- **2** A is Turing reducible to Kleene's O.

We interpret the second condition as the condition " $\underline{\Delta}_1^0$ relative to a Π_1^1 -complete set."

Question

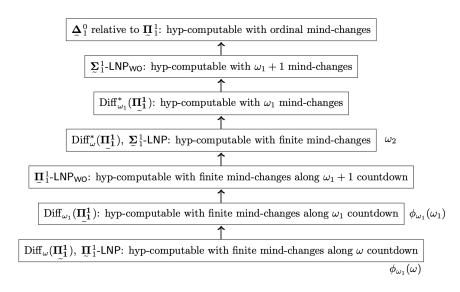
$$Diff^*_{\omega_1}(\Pi_1^1) = \stackrel{a}{\simeq} \stackrel{0}{\Delta_1^0}$$
 relative to Π_1^1 ?

- Σ₁⁰(Π₁): The smallest family containing all Π₁ and Σ₁ sets and closed under countable union, finite intersection, and continuous preimage.
- Δ⁰₁(Π¹₁): The family of all sets A such that both A and its complement belong to Σ⁰₁(Π¹₁).

Theorem

 $\textit{Diff}^*_{\omega_1}(\Pi_1^1) \subsetneq \Delta_1^0(\Pi_1^1).$

$$D_{n}(\Pi_{1}^{1}) = D_{n}^{*}(\Pi_{1}^{1}) \subsetneq \cdots \subsetneq D_{\alpha}(\Pi_{1}^{1}) \subsetneq \cdots \subsetneq Diff_{\omega_{1}}(\Pi_{1}^{1}) \subsetneq Diff_{\omega}^{*}(\Pi_{1}^{1}) \subsetneq$$
$$\subsetneq D_{\omega}^{*}(\Pi_{1}^{1}) \subsetneq \cdots \subsetneq D_{\alpha}^{*}(\Pi_{1}^{1}) \subsetneq \cdots \subsetneq Diff_{\omega_{1}}^{*}(\Pi_{1}^{1}) \subsetneq \bigtriangleup_{1}^{0}(\Pi_{1}^{1}).$$



Summary

- *Diff*_{ω1}(Π¹): hyp-computability with finite mind-changes, but with a mind-change countdown starting from < ω₁.
- $Diff^*_{\omega}(\Pi^1_1)$: hyp-computability with finite mind-changes.
- The Wadge rank of $Diff_{\omega_1}(\prod_{i=1}^{1})$ is $\phi_{\omega_1}(\omega_1)$.
- The Wadge rank of $Diff^*_{\omega}(\prod_{i=1}^{1})$ is ω_2 .
- Π_1^1 -*LNP*_{WO} is in between $Diff_{\omega_1}(\Pi_1^1)$ and $Diff_{\omega}^*(\Pi_1^1)$.
- The Wadge rank of $Diff^*_{\omega+1}(\prod_{i=1}^{1})$ is much larger than $\omega_2 \cdot \omega_1$. (It seems at least ω_2^2).
- Σ_1^1 -*LNP*_{WO} is in between $Diff^*_{\omega_1}(\Pi_1^1)$ and $\Delta_1^0(\Pi_1^1)$.

Question

- What is the Wadge rank of $Diff_{\omega+1}^*(\prod_{i=1}^{1})?$
- What is the Wadge rank of $Diff_{\omega_1}^*(\prod_{j=1}^1)$?