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Proof Mining in core mathematics

During (mainly) the last 20 years this proof-theoretic approach has

resulted in numerous new quantitative results as well as

qualitative uniformity results in particular in: nonlinear analysis,

fixed point theory, ergodic theory, topological dynamics,

approximation theory, convex optimization, abstract Cauchy

problems, pursuit-evasion games (≥ 100 papers mostly in specialized

journals in the resp. areas or general mathematics journals).

General logical metatheorems explain applications as instances of

logical phenomena (K. 2005, Gerhardy/K. 2008, TAMS).

Some of the logical tools used have been rediscovered in 2007 in

special cases by Terence Tao prompted by concrete mathematical

needs “finitary analysis”!
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The running theme: convergence statements in analysis

Let (xn) be a Cauchy sequence in a metric space (X , d), i.e.

∀k ∈ IN∃n ∈ IN∀i , j ≥ n (d(xi , xj ) ≤ 2−k) ∈ ∀∃∀

is noneffectively equivalent to

∀k ∈ IN g ∈ ININ∃n ∈ IN∀i , j ∈ [n; n+g(n)] (d(xi , xj ) < 2−k) ∈ ∀∃

Kreisel’s no-counterexample interpretation or metastability (T. Tao).

A bound Φ(k, g) on ‘∃n’ in the latter formula is a rate of metastability.
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Effective full rates of convergence?

Usually possible for asymptotic regularity results

d(xn,T (xn))→ 0,

even when (xn) may not converge to a fixed point of T .

Possible for (xn) if sequence converges to unique fixed point.

Extraction of modulus of uniqueness Φ : R∗+ → R∗+

∀ε > 0∀x, y ∈ X
(
d(x,T (x)), d(y ,T (y)) < Φ(ε)→ d(x, y) < ε

)
gives rate of convergence (or – in the noncompact case – existence

at all)! Numerous applications in analysis!

Possible also in the nonunique case for Fejér monotone algorithms

if one has a modulus of metric regularity (see below).
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Applications to the
Proximal Point Algorithm
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Proximal mappings in Hilbert space

Let H be a real Hilbert space. f : H → (−∞,∞] proper lsc convex.

The proximal mapping proxf : H → H is defined (for λ > 0) by

proxf (x) := argmin
y∈H

[
f (y) +

1

2
‖x − y‖2

]
.

Fact: Fix(proxf ) = argmin f .

Example: Let C ⊆ H be nonempty, closed and convex and

ιC : H → [0,∞], x 7→
{

0, if x ∈ C
∞, otherwise.

its indicator function, then proxιC is the metric projection onto C .
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Monotone operators

A set-valued mapping A ⊆ H → 2H is monotone if

∀(x, u), (y , v) ∈ gr(A) (〈x − y , u − v〉 ≥ 0) .

If A is monotone then the resolvent

JA : R(I + A)→ D(A), x 7→ (I + A)−1(x)

is single-valued and firmly nonexpansive, i.e. for

T := JA,D := R(I + A)

∀x, y ∈ D
(
‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2

)
.

A is maximally monotone if is has no proper monotone extension. In

this case R(I + A) = H .

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



Monotone operators

A set-valued mapping A ⊆ H → 2H is monotone if

∀(x, u), (y , v) ∈ gr(A) (〈x − y , u − v〉 ≥ 0) .

If A is monotone then the resolvent

JA : R(I + A)→ D(A), x 7→ (I + A)−1(x)

is single-valued and firmly nonexpansive, i.e. for

T := JA,D := R(I + A)

∀x, y ∈ D
(
‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2

)
.

A is maximally monotone if is has no proper monotone extension. In

this case R(I + A) = H .

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



Monotone operators

A set-valued mapping A ⊆ H → 2H is monotone if

∀(x, u), (y , v) ∈ gr(A) (〈x − y , u − v〉 ≥ 0) .

If A is monotone then the resolvent

JA : R(I + A)→ D(A), x 7→ (I + A)−1(x)

is single-valued and firmly nonexpansive, i.e. for

T := JA,D := R(I + A)

∀x, y ∈ D
(
‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2

)
.

A is maximally monotone if is has no proper monotone extension. In

this case R(I + A) = H .

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



The Proximal Point Algorithm I

Example: Let f be as before. Then the subdifferential of f

∂f : H → 2H : x 7→ {u ∈ H : ∀y ∈ H (〈y − x, u〉+ f (x) ≤ f (y)}

is a maximally monotone operator.

Facts: If A is monotone and λ > 0, then

Fix(JλA) = zer A.

For f as above and A := ∂f we have proxf = J∂f and

argmin f = Fix(Jλ∂f ) = zer ∂f .

Let (λn) ⊂ (0,∞) and A maximally monotone, then the Proximal

Point Algorithm (PPA) is defined by

xn+1 := JλnA(xn), x0 ∈ H.
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The proximal point algorithm II

xn+1 := JλnAxn, Proximal Point Algorithm (PPA).

Under suitable conditions on (λn) ⊂ (0,∞) : (xn) converges weakly to

a zero of A (Martinet 1970, Rockafellar 1976), but not strongly (Güler

1996).

Generalizations to Banach spaces (then A accretive) or geodesic spaces.

In general no effective rates of convergence already for IR (Neumann

2015).

Rates of metastability in the finite dimensional/boundedly compact case:

Hilbert space: K./Leuştean/Nicolae. Comm.Contemp. Math. 2018.

CAT(0) spaces: Leuştean/Sipoş J. Nonlin. Var. Anal. 2018.

abstract forms of PPA in Hilbert space: Leuştean/Nicolae/Sipoş J.

Global Opt. 2018.

uniformly convex Banach spaces: K. J. Convex Anal. 2021.
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Global Opt. 2018.

uniformly convex Banach spaces: K. J. Convex Anal. 2021.

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



The proximal point algorithm II

xn+1 := JλnAxn, Proximal Point Algorithm (PPA).

Under suitable conditions on (λn) ⊂ (0,∞) : (xn) converges weakly to

a zero of A (Martinet 1970, Rockafellar 1976), but not strongly (Güler
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Rates of convergence (without finite dimension/compactness) possible

if A is uniformly monotone (accretive) in a suitable sense:

In Hilbert space: Leuştean/Nicolae/Sipoş J. Global Opt. 2018.

In suitable Banach spaces and for many other related algorithms:

K./Powell: Computers & Mathematics Appl. 2020.

In general: strong convergence (even in infinite dimensional Hilbert

spaces) only for so-called Halpern type variant of PPA:

xn+1 := αnu + (1− αn)JλnAxn, u, x0 ∈ H (HPPA)

(necessary conditions: limαn = 0,
∑
αn =∞).
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Rates of metastability of HPPA

Again in general no effective rates of convergence, but rates of

metastability:

In Hilbert space for limλn = λ ∈ (0, 1) : Pinto (Thesis June 2019),

Leuştean/Pinto Comput. Opt. Appl. 2021.

In Hilbert space for limλn →∞ : Pinto (Thesis June 2019), Numer.

Funct. Anal. Optim. 2021.

In Banach spaces which are uniformly convex and uniformly smooth

and for inf λn ≥ λ > 0 : K. J. Nonlin. Convex Anal. 2020.

In Hilbert space and for inf λn ≥ λ > 0 and a general schema

covering HPPA as special case: Dinis/Pinto J. Convex Anal. 2021.

The proofs and their resp. minings are very different!
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Leuştean/Pinto Comput. Opt. Appl. 2021.

In Hilbert space for limλn →∞ : Pinto (Thesis June 2019), Numer.

Funct. Anal. Optim. 2021.

In Banach spaces which are uniformly convex and uniformly smooth

and for inf λn ≥ λ > 0 : K. J. Nonlin. Convex Anal. 2020.

In Hilbert space and for inf λn ≥ λ > 0 and a general schema

covering HPPA as special case: Dinis/Pinto J. Convex Anal. 2021.

The proofs and their resp. minings are very different!

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



Rates of metastability of HPPA

Again in general no effective rates of convergence, but rates of

metastability:

In Hilbert space for limλn = λ ∈ (0, 1) : Pinto (Thesis June 2019),
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Fejér monotonicity and regularity

Why are people in optimization not always using the strongly convergent

HPPA instead of the weakly convergent PPA?

HPPA - as all commonly used strongly convergent methods - is not Fejér

monotone while PPA (and many other weakly convergent methods) is:

Definition

A sequence (xn) in a metric space (X , d) is Fejér monotone w.r.t. a

subset S ⊆ X if ∀n ∈ IN∀p ∈ S (d(xn+1, p) ≤ d(xn, p)).

Why is this important?

If one has metric regularity one not only gets strong convergence but

even a rate of convergence!
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Moduli of regularity for mappings

In continuous optimization notions of linear or Hölder metric

regularity, error bounds and weak sharp minima etc. play an

important role which can be viewed as (often local forms of) special

cases of (see also R.M. Anderson: ‘Almost’ implies ‘Near’, TAMS 1986):

Definition (K./Lopéz-Acedo/Nicolae, Israel J. Math 2019)

Let F : X → IR with zer F := {x ∈ X : F (x) = 0} 6= ∅.
F is regular w.r.t. zer F if

∀n∈ IN∃k ∈ IN ∀x ∈ X
(
|F (x)|< 2−k→∃z ′∈ zer F (d(x, z ′)<2−n)

)
.

A function ω : IN→ IN providing k = ω(n) is a modulus of

regularity.

This also covers fixed point and equilibrium problems.
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Computational use of moduli of regularity

Proposition (K./Lopéz-Acedo/Nicolae Israel J. Math. 2019)

Let F : X → IR be with zer F 6= ∅ and with modulus of metric

regularity ω. Let (xn) be a sequence in X and ψ : IN→ IN be s.t.

∀k ∈ IN ∃n ≤ ψ(k)
(
|F (xn)| < 2−k) ,

where (xn) is Fejér monotone w.r.t. zer F . Then (xn) is Cauchy:

∀k ∈ IN ∀n, ñ ≥ Φ(k) := ψ(ω(k + 1))
(
d(xn, xñ) < 2−k)

and ∀k ∈ IN ∀n ≥ Φ(k)
(
dist(xn, zer F ) < 2−k) .

If X is complete and F is continuous, then lim xn ∈ zer F .
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Noncomputability of moduli of metric regularity

Proposition

If F : X → IR is continuous, X is compact and zerF 6= ∅, then F has

a modulus of regularity.

In general, there will be no computable moduli of metric regularity:

Proposition (K./López-Acedo/Nicolae Israel J. Math. 2019)

There exists a computable firmly nonexpansive mapping

T : [0, 1]→ [0, 1] which has no computable modulus of metric

regularity φ w.r.t. Fix(T ) (= zer (I−T )).

In fact, the cases where one can compute such a modulus are rare.

However there are important cases where this is true (connection to

o-minimality: tame optimization, Ioffe, Lewis, Bolte, Daniilidis...!)
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Proposition (K./López-Acedo/Nicolae Israel J. Math. 2019)

There exists a computable firmly nonexpansive mapping

T : [0, 1]→ [0, 1] which has no computable modulus of metric

regularity φ w.r.t. Fix(T ) (= zer (I−T )).

In fact, the cases where one can compute such a modulus are rare.

However there are important cases where this is true (connection to

o-minimality: tame optimization, Ioffe, Lewis, Bolte, Daniilidis...!)

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



Noncomputability of moduli of metric regularity

Proposition

If F : X → IR is continuous, X is compact and zerF 6= ∅, then F has

a modulus of regularity.

In general, there will be no computable moduli of metric regularity:
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Applications in Nonconvex
Optimization
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The monotonicity of ∂f is due to the convexity assumption on f .

To treat nonconvex-nonconcave min-max optimization one has to

consider generalizations of monotone operators.

Definition (Bauschke/Moursi/Wang 2020; Combettes/Pennanen 2004)

Let ρ ∈ IR. A : H → 2H is called ρ-comonotone if

∀(x, u), (y , v) ∈ gr(A) (〈x − y , u − v〉 ≥ ρ‖u − v‖2).

For ρ < 0 this generalizes the concept of monotonicity.

Recently (arXiv Oct.2020), Diakonikolas/Daskalakis/Jordan considered

this and even more general forms in the context of

nonconvex-nonconcave min-max optimization and machine learning!
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Uniform strong nonexpansivity of families of functions

Our proof mining of convergence results on the PPA and the HPPA show

that these results essentially only need use (though implicitly) that (JγnA)

has a common modulus of strong nonexpansivity (SNE-modulus):

Definition (Bruck/Reich 1977, K. 2016)

C ⊆ X subset of some Banach space X . T : C → X is strongly

nonexpansive with SNE-modulus ω : (0,∞)2 → (0,∞) if

∀b, ε > 0∀x, y ∈ C

‖x−y‖ ≤ b∧‖x−y‖−‖Tx−Ty‖<ω(b, ε)→‖(x−y)−(Tx−Ty)‖<ε.
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If A is monotone (in Hilbert space) or accretive (in Banach space), then

JγA is firmly nonexpansive (purely universal condition).

Proposition (K. Israel J. Math. 2016)

If X is uniformly convex with modulus η and T : C → X is firmly

nonexpansive, then T is SNE with modulus

ωη(b, ε) =
1

4
η(ε/b) · ε.

In Hilbert space ω(b, ε) := 1
16bε

2.
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Proposition (K. Optimization Letters 2021)

Let H be a real Hilbert space and (γn) ⊂ (0,∞), γ > 0 be such that

γn ≥ γ > 0 for all n ∈ IN. Let ρ ∈ (−γ2 , 0] and A ⊆ H × H be

ρ-comonotone.

Then JγnA : R(I + γnA)→ D(A) is strongly nonexpansive with

common SNE-modulus

ωα(b, ε) :=
1− α
4bα

· ε2, where α :=
1

2((ρ/γ) + 1)
∈ (0, 1).

The proof uses crucially a recent result by Bauschke/Moursi/Wang 2020,

that JA is an averaged map whenever A is > − 1
2 comonotone.

Averaged maps in uniformly convex Banach spaces are also strongly

nonexpansive (Bruck/Reich 1977).

Hilbert space: proper generalization of the firmly nonexpansive mappings.

SNE-modulus for averaged maps in Hilbert space: Sipoş 2020.
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Results on PPA and HPPA in Hilbert space for

ρ-comonotone operators

Rate of metastability for the convergence of the PPA in the

boundedly compact case.

Rates of convergence of the PPA in the general case if one has a

modulus of regularity.

Rate of metastability for the convergence of HPPA in the general

case together with quantitative information of the limit being a zero

of A.

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



Results on PPA and HPPA in Hilbert space for

ρ-comonotone operators

Rate of metastability for the convergence of the PPA in the

boundedly compact case.

Rates of convergence of the PPA in the general case if one has a

modulus of regularity.

Rate of metastability for the convergence of HPPA in the general

case together with quantitative information of the limit being a zero

of A.

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



Results on PPA and HPPA in Hilbert space for

ρ-comonotone operators

Rate of metastability for the convergence of the PPA in the

boundedly compact case.

Rates of convergence of the PPA in the general case if one has a

modulus of regularity.

Rate of metastability for the convergence of HPPA in the general

case together with quantitative information of the limit being a zero

of A.

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



Theorem (K. Optimization Letters 2021)

Let A ⊆ H × H be ρ-comonotone, (γn), γ, ρ as before. Assume that

D(A) ⊆
⋂∞

n=0 R(I + γnA) is boundedly compact and x0 ∈ D(A).

Then (xn) strongly converges to a zero of A. Moreover,

(∗)

{
∀k ∈ IN∀g ∈ ININ ∃n ≤ Ψ(k, g , β)∀i , j ∈ [n, n + g(n)](
‖xi − xj‖ ≤ 1

k+1 and xi ∈ F̃k

)
,

where

F̃k :=
⋂
i≤k

{
x ∈ D(A) : ‖x − JγiAx‖ ≤

1

k + 1

}
and β is a modulus of total boundedness for D(A) ∩ B(0,M), where

B(0,M) := {x ∈ H : ‖x‖ ≤ M}, with M ≥ b + ‖p‖ and b ≥ ‖x0 − p‖ for

some p ∈ zer A.
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Here Ψ(k, g , β) := Ψ0(P, k0, g), with{
Ψ0(0, k0, g) := 0

Ψ0(n + 1, k0, g) := Φ
(
χM
k,g (Ψ0(n, k0, g), 4k0 + 3)

)
,

and

χk,g (n, r) := max{2k + 1, χ(n, g(n), r)}, χM
k,g (n, r) := maxi≤n{χk,g (i , r)},

P := β (4k0 + 3) , k0 = 2k + 1 χ(n,m, r) := max{n + m − 1,m(r + 1)}
Φ(k) :=

⌈
b

ωα(b,((k+1)Ck )−1)

⌉
+ 1, Ck ≥ 2 + γi

γ for all i ≤ k.
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Theorem (K. Optimization Letters 2021)

Let A and (γn), γ, ρ, b be as above and assume that

D(A) ⊆
∞⋂
n=0

R(I + γnA). If A has a modulus φ of regularity (suitable

adapted for the set-valued case) w.r.t zer A and B(p, b), then without

compactness assumption (xn) converges to a zero z := lim xn of A with

rate of convergence

ξ(ε, γ, b) :=

⌈
b

ωα (b, φ(ε/2) · γ)

⌉
+ 2.
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algorithm. J. Global Optim. 72, pp. 553-577 (2018).

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization



P. Pinto, Proof mining with the bounded functional interpretation.

PhD Thesis, Universidade de Lisboa, 143pp., 2019.

P. Pinto, A rate of metastability for the Halpern type Proximal Point

Algorithm. Numer. Funct. Anal. Optim. 42, pp. 320-343, (2021).

Ulrich Kohlenbach Proof Mining in Nonconvex Optimization


