The combinatorial equivalence of a computability theoretic question

Lu Liu

Email: g.jiayi.liu@gmail.com

Central South University School of Mathematics and Statistics

Oberwolfach 2021 Workshop on Computability Theory

April 28, 2021

Lu Liu Email: g.jiayi.liu@gmail.com (The combinatorial equivalence of a co

オポト イラト イラト

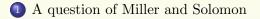
Introduction

- ▶ We prove that a question of Miller and Solomon—whether every coloring $c: d^{<\omega} \to k$ admits a *c*-computable variable word infinite solution, is equivalent to a combinatorial question.
- The combinatorial question asked whether there is a sequence of positive integers so that each of its initial segment satisfies a Ramsey type property.
- Moreover, the negation of the combinatorial question is a generalization of Hales-Jewett theorem.

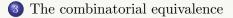
We thank Denis Hirschfeldt, Benoit Monin and Ludovic Patey for helpful discussion.

3

イロト イヨト イヨト イヨト







(4) On $ENSH_k^d$ and Hales-Jewett Theorem

Lu Liu Email: jiayi.liu@gmail.com (The combinatorial equivalence of a co - 4 周 ト 4 ヨ ト 4 ヨ ト

We adopt the problem-instance-solution framework.

Definition 1 (Variable word)

An *n*-variable word over d is a sequence v (finite or infinite) of $\{0, \dots, d-1\} \cup \{x_0, x_1, \dots\}$ where there are n many variables in v.

イロト イポト イヨト イヨト

We adopt the problem-instance-solution framework.

Definition 1 (Variable word)

- An *n*-variable word over d is a sequence v (finite or infinite) of $\{0, \dots, d-1\} \cup \{x_0, x_1, \dots\}$ where there are n many variables in v.
- Given an $\vec{a} \in d^m$, an *n*-variable word *v*, suppose

 $x_{m_0}, x_{m_1}, \dots, x_{m_{n-1}}$ occur in v with $m_{\hat{n}-1} < m_{\hat{n}}$ for all $\hat{n} < n$. We write $v(\vec{a})$ for the $\{0, \dots, d-1\}$ -string obtained by substitute $x_{m_{\hat{n}}}$ with $\vec{a}(\hat{n})$ in v for all $\hat{n} < m$ and then truncating the result just before the first occurrence of $x_{m_{\hat{n}+1}}$.

イロト 不得 とくほ とくほ とうほう

We adopt the problem-instance-solution framework.

Definition 1 (Variable word)

- An *n*-variable word over d is a sequence v (finite or infinite) of $\{0, \dots, d-1\} \cup \{x_0, x_1, \dots\}$ where there are n many variables in v.
- Given an $\vec{a} \in d^m$, an *n*-variable word *v*, suppose

 $x_{m_0}, x_{m_1}, \dots, x_{m_{n-1}}$ occur in v with $m_{\hat{n}-1} < m_{\hat{n}}$ for all $\hat{n} < n$. We write $v(\vec{a})$ for the $\{0, \dots, d-1\}$ -string obtained by substitute $x_{m_{\hat{n}}}$ with $\vec{a}(\hat{n})$ in v for all $\hat{n} < m$ and then truncating the result just before the first occurrence of $x_{m_{\hat{n}+1}}$.

• We write $P_{x_m}(v)$ for the set of positions of x_m in v, namely $\{t: v(t) = x_m\}$; the *first occurrence* of a variable x_m in v refers to the integer min $P_{x_m}(v)$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

$\mathsf{VWI}\xspace$ problem

Example 2

Infinite variable word v on $\{0, 1\}$:

011	$x_0 x_0 \ 011$	x_1	x_0x_0	$x_1 x_1 00$	$x_2x_2\cdots$	(1.1)
$\vec{a} = 10, v(\vec{a}) = 011$	11 011	0	11	<mark>00</mark> 00.		
$P_{x_0}(v) = \{3, 4$	$,9,10,\cdots\}.$					

イロト イヨト イヨト イヨト

- 12

Example 2

Infinite variable word v on $\{0, 1\}$:

011	$x_0 x_0 \ 011$	$x_1 x_0 x_0$	$x_1 x_1 00$	$x_2x_2\cdots$	(1.1)
$\vec{a} = 10, v(\vec{a}) = 011$	11 011	0 11	<mark>00</mark> 00.		
$P_{x_0}(v) = \{3, 4$	$,9,10,\cdots\}.$				

Definition 3

- ▶ Problem: VWI(d, k).
- Instance: $c: d^{<\omega} \to k$.
- Solution: an ω -variable word v such that $\{v(\vec{a}) : \vec{a} \in d^{<\omega}\}$ is monochromatic.

▲ 目 → 目 → 目 → へへ
April 28, 2021 6 / 29

イロト 不同ト イヨト イヨト

$\mathsf{VWI}\xspace$ vs RCA

Joe Miller and Solomon proposed the following question in [Miller and Solomon, 2004].

Question 4

Does every VWI(d, k)-instance c admit c-computable solution?

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

- 2

VWI vs RCA

Joe Miller and Solomon proposed the following question in [Miller and Solomon, 2004].

Question 4

Does every VWI(d, k)-instance c admit c-computable solution?

Or in terms of reverse mathematics:

Question 5

Is VWI(d, k) provable in RCA?

イロト 不得 とくほ とくほう 二日

Other versions of variable word problem

Definition 6 (VW, OVW)

If we require the occurrence of x_i being finite for all *i* then the problem is called VW.

If we require all the occurrence of x_i comes before any occurrence of x_{i+1} then it is called OVW (ordered variable word).

イロト イポト イヨト イヨト

Other versions of variable word problem

Definition 6 (VW, OVW)

If we require the occurrence of x_i being finite for all *i* then the problem is called VW.

If we require all the occurrence of x_i comes before any occurrence of x_{i+1} then it is called OVW (ordered variable word).

The problem is proposed by [Carlson and Simpson, 1984] and studied in [Miller and Solomon, 2004], [Liu et al., 2019]. Clearly,

Theorem 7

$$\begin{split} \mathsf{VWI}(d,k) &\leq \mathsf{VW}(d,k) \leq \mathsf{OVW}(d,k).\\ \mathsf{VWI}(d,k) \Leftrightarrow \mathsf{VWI}(d,k+1), \mathsf{VW}(d,k) \Leftrightarrow \mathsf{VW}(d,k+1), \mathsf{OVW}(d,k) \Leftrightarrow \\ \mathsf{OVW}(d,k+1). \end{split}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The complexity of OVW, VW

Theorem 8 ([Miller and Solomon, 2004])

There exists a computable instance of $\mathsf{OVW}(2,2)$ that does not admit Δ_2^0 solution. Thus $\mathsf{RCA}_0 + \mathsf{WKL}$ does not prove $\mathsf{VW}(2,2)$.

イロト 不得 とくほ とくほ とうほう

The complexity of OVW, VW

Theorem 8 ([Miller and Solomon, 2004])

There exists a computable instance of $\mathsf{OVW}(2,2)$ that does not admit Δ_2^0 solution. Thus $\mathsf{RCA}_0 + \mathsf{WKL}$ does not prove $\mathsf{VW}(2,2)$.

The following result answers a question of [Miller and Solomon, 2004] and [Montalbán, 2011].

Theorem 9 (Monin, Patey, L)

► For every computable OVW(2,2)-instance c, every Ø'-PA degree compute a solution to c.

► There exists a computable OVW(2,2)-instance such that every solution is Ø'-DNC degree.

Corollary 10 (Monin, Patey, L)

ACA proves OVW(2,2).

Question 11 ([Miller and Solomon, 2004])

Does $\mathsf{OVW}(d, k)$ or $\mathsf{VW}(d, k)$ implies ACA_0 for some *l*?

Lu Liu Email: g.jiayi.liu@gmail.com (The combinatorial equivalence of a co April 28, 2021 10/29

イロト 不得 トイヨト イヨト 三日

A combinatorial equivalence of "VWI(2,2) vs RCA"

Definition 12 $(ENSH_k^d)$

▶ Let n_0, n_1, \dots, n_{r-1} be a sequence of positive integers, let $N_0 = \{0, \dots, n_0 - 1\}, N_1 = \{n_0, \dots, n_0 + n_1 - 1\}, \dots,$ $N_{r-1} = \{n_0 + \dots + n_{r-2}, \dots, n_0 + \dots + n_{r-1} - 1\},$ and $N = \bigcup_{s \le r-1} N_s$; let $f : d^N \to k$. We say $n_0 \cdots n_r$ is sectionally-homogeneous for f if there exists an $s \le r - 1$, an n_s -variable word v over d of length N such that the first occurrence of variables in v consist of N_s , i.e.,

$$\{\min P_{x_m}(v): m \in \omega\} = N_s,$$

and v is monochromatic for f.

• We write $ENSH_k^d(n_0 \cdots n_{r-1})$ iff there exists a coloring $f: d^N \to k$ such that $n_0 \cdots n_{r-1}$ is not sectionally-homogeneous for f. In that case we say f witnesses $ENSH_k^d(n_0 \cdots n_{r-1})$.

A combinatorial equivalence of "VWI(2,2) vs RCA"

Let $ENSH_k^d$ denote the set of infinite sequence of integers $n_0n_1\cdots$ such that $ENSH_k^d(n_0\cdots n_r)$ holds for all $r \in \omega$.

Theorem 13 ([Liu, 2020])

The following are equivalent:

There exists a VWI(d, k)-instance c that does not admit c-computable solution.

• There exists an $X \in ENSH_k^d$.

イボト イラト イラト

The combinatorial equivalence

Intuition on $ENSH_k^d(n_0\cdots n_{r-1})$

Proposition 14

If \vec{n} is a subsequence of \vec{n} or $\vec{n} \ge \vec{n}$, then $ENSH_k^d(\vec{n})$ implies $ENSH_k^d(\vec{n})$.

Lu Liu Email: g.jiayi.liu@gmail.com (The combinatorial equivalence of a co April 28, 2021 13/29

(人間) とうき くうり

3

Intuition on $ENSH_k^d(n_0\cdots n_{r-1})$

Proposition 15

 $ENSH_{2}^{2}(22), ENSH_{2}^{2}(222)$ holds. $ENSH_{2}^{2}(n)$ holds for all n > 0.

Proof.

To see $ENSH_2^2(22)$, consider

$$f(\vec{a}) = \vec{a}(0) + \vec{a}(1) + \vec{a}(2) \ mod \ 2.$$

To see $ENSH_2^2(222)$, consider

 $f(\vec{a}) = I(\vec{a}(0) + \vec{a}(1) > 0) + \vec{a}(2) + \vec{a}(3) + \vec{a}(4) \ mod \ 2.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

April 28, 2021

3

14/29

Where I() is the indication function. To see $ENSH_2^2(n)$, simply consider $f(\vec{a}) = \vec{a}(0) \mod 2$.

Intuition on $ENSH_k^d(n_0\cdots n_{r-1})$

Proposition 16

 $ENSH_2^2(2222)$ does not hold.

Proof.

We don't know the proof. Adam P. Goucher at Mathoverflow examined this using SAT solver (https://mathoverflow.net/questions/293112/ramsey-type-theorem). It's easy to check that the following functions don't work:

$$\begin{split} f(\vec{a}) &= I(\vec{a}(0) + \vec{a}(1) > 0) + \vec{a}(2) + \vec{a}(3) + \vec{a}(4) + \vec{a}(6) \mod 2; \quad (3.1) \\ f(\vec{a}) &= I(\vec{a}(0) + \vec{a}(1) > 0) + I(\vec{a}(2) + \vec{a}(3) > 0) + \\ &\quad + \vec{a}(4) + \vec{a}(5) + \vec{a}(6) \mod 2; \end{split}$$

< 🗇 🕨

April 28, 2021

15/29

(\Leftarrow)

► A Turing functional Ψ^X computes a variable word if Ψ^X is an enumerable set (possibly finite) $\{v_0, v_1, \cdots\}$ of finitely long variable words such that $v_0 \leq v_1 \leq \cdots$.

(\Leftarrow)

► A Turing functional Ψ^X computes a variable word if Ψ^X is an enumerable set (possibly finite) $\{v_0, v_1, \cdots\}$ of finitely long variable words such that $v_0 \leq v_1 \leq \cdots$.

▶ Putting priority argument aside, assume each Turing functional is total. i.e., for each $r \in \omega$, let $v_r \in \Psi_r^X$ be such that v_r contains X(r) many variables whose first occurrence is after $|v_{r-1}|$.

(\Leftarrow)

- ► A Turing functional Ψ^X computes a variable word if Ψ^X is an enumerable set (possibly finite) $\{v_0, v_1, \cdots\}$ of finitely long variable words such that $v_0 \leq v_1 \leq \cdots$.
- Putting priority argument aside, assume each Turing functional is total. i.e.,

for each $r \in \omega$, let $v_r \in \Psi_r^X$ be such that v_r contains X(r) many variables whose first occurrence is after $|v_{r-1}|$.

Suppose $(f_r : r \in \omega)$ witnesses $ENSH_k^d(X \upharpoonright r)$. We transform these f_r to a coloring c so that there is no $v \succeq v_r$ monochromatic for c.

イロト イポト イヨト イヨト

▶ To define c on d^n , let r(n) be the maximal integer such that $|v_{r(n)}| \leq n$. We ensure that c on d^n "oppress" v_r for all $r \leq r(n)$.

< 口 > < 同 > < 三 > < 三 >

- ▶ To define c on d^n , let r(n) be the maximal integer such that $|v_{r(n)}| \leq n$. We ensure that c on d^n "oppress" v_r for all $r \leq r(n)$.
- Let P_r be the set of first occurrence of variables in v_r whose first occurrence is after $|v_{r-1}|$. W.l.o.g, suppose $|P_r| = X(r)$ for all $r \in \omega$.

- ▶ To define c on d^n , let r(n) be the maximal integer such that $|v_{r(n)}| \leq n$. We ensure that c on d^n "oppress" v_r for all $r \leq r(n)$.
- ► Let P_r be the set of first occurrence of variables in v_r whose first occurrence is after $|v_{r-1}|$. W.l.o.g, suppose $|P_r| = X(r)$ for all $r \in \omega$.

• Define
$$c(\vec{a}) = f_{r(n)+1}(\vec{a} \upharpoonright \cup_{r \le r(n)} P_r).$$

 (\Rightarrow)

► Take advantage of some particular algorithms Φ_0, Φ_1, \cdots and show that their failure (to compute a solution to c) gives rise to a sequence $X \in ENSH_k^d$.

イロト 不同ト イヨト イヨト

3

 (\Rightarrow)

- ► Take advantage of some particular algorithms Φ_0, Φ_1, \cdots and show that their failure (to compute a solution to c) gives rise to a sequence $X \in ENSH_k^d$.
- $\Phi_0^c, \Phi_1^c, \cdots$ are greedy algorithms in the sense that they extend their current computation (which is a finitely long variable word) whenever possible. More precisely,

イロト イボト イラト イラト

 (\Rightarrow)

- ► Take advantage of some particular algorithms Φ_0, Φ_1, \cdots and show that their failure (to compute a solution to c) gives rise to a sequence $X \in ENSH_k^d$.
- $\Phi_0^c, \Phi_1^c, \cdots$ are greedy algorithms in the sense that they extend their current computation (which is a finitely long variable word) whenever possible. More precisely,
- Φ_{r+1}^c extends its current computation from v_{r+1} to some $\hat{v} \succeq v_{r+1}$ where \hat{v} has more variables than v_{r+1} , whenever it is found that for some $\vec{a} \in d^{|v_r|+1}$, \hat{v}/\vec{a} is monochromatic for c.

イロト イポト イヨト イヨト 二日

 (\Rightarrow)

- ► Take advantage of some particular algorithms Φ_0, Φ_1, \cdots and show that their failure (to compute a solution to c) gives rise to a sequence $X \in ENSH_k^d$.
- $\Phi_0^c, \Phi_1^c, \cdots$ are greedy algorithms in the sense that they extend their current computation (which is a finitely long variable word) whenever possible. More precisely,
- Φ_{r+1}^c extends its current computation from v_{r+1} to some $\hat{v} \succeq v_{r+1}$ where \hat{v} has more variables than v_{r+1} , whenever it is found that for some $\vec{a} \in d^{|v_r|+1}$, \hat{v}/\vec{a} is monochromatic for c.
- Moreover, Φ_{r+1}^c will build its solution v_{r+1} based on $\Phi_0^c, \dots, \Phi_r^c$ in the sense that all variables in v_{r+1} occur after $|v_r|$ and if some $\Phi_{\tilde{r}}^c$ extends its current computation, then all Φ_r^c (where $r > \tilde{r}$) will restart all over again.

イロト 不同 トイヨト イヨト 一日

Since c does not admit a c-computable solution, for every $r \in \omega$, the computation of Φ_r^c stucks at some v_r .

イロト 不同ト イヨト イヨト

3

- Since c does not admit a c-computable solution, for every $r \in \omega$, the computation of Φ_r^c stucks at some v_r .
- More precisely, let $\hat{v}_r = v_r x_{n_r-1}$ (where we assume that all variables in v_r are $\{x_0, \cdots, x_{n_r-2}\}$), we have

- Since c does not admit a c-computable solution, for every $r \in \omega$, the computation of Φ_r^c stucks at some v_r .
- More precisely, let $\hat{v}_r = v_r x_{n_r-1}$ (where we assume that all variables in v_r are $\{x_0, \cdots, x_{n_r-2}\}$), we have
- ▶ there is no $\hat{v} \succeq \hat{v}_r$ such that for some $\vec{a} \in d^{|\hat{v}_{r-1}|}, \hat{v}/\vec{a}$ is monochromatic for c; moreover, all variables in v_r occur after $|v_{r-1}|$ and $|v_r| > |v_{r-1}|$.
- We show that $n_0 n_1 n_2 \cdots \in ENSH_k^d$.

イロト イポト イヨト イヨト

► Fix an $r \in \omega$, let $N = n_0 + \cdots + n_r$. To define $f : d^N \to k$ witnessing $ENSH_k^d(n_0 \cdots n_r)$, for every $\vec{a} \in d^N$ we map \vec{a} to a word $\vec{\hat{a}} = h(\vec{a}) \in d^{|\hat{v}_r|}$ and let $f(\vec{a}) = c(\hat{\vec{a}})$.

- ► Fix an $r \in \omega$, let $N = n_0 + \cdots + n_r$. To define $f : d^N \to k$ witnessing $ENSH_k^d(n_0 \cdots n_r)$, for every $\vec{a} \in d^N$ we map \vec{a} to a word $\vec{\hat{a}} = h(\vec{a}) \in d^{|\hat{v}_r|}$ and let $f(\vec{a}) = c(\hat{\vec{a}})$.
- ▶ Intuitively, h is defined by connecting each element of N, say $n_0 + \cdots + n_{s-1} + m$, to a set $P_{x_m}(\hat{v}_s)$ and copy the value $\vec{a}(n_0 + \cdots + n_{s-1} + m)$ to $\hat{a}(t)$ for all $t \in P_{x_m}(\hat{v}_s)$. More precisely,

Proof of theorem 13

- ► Fix an $r \in \omega$, let $N = n_0 + \cdots + n_r$. To define $f : d^N \to k$ witnessing $ENSH_k^d(n_0 \cdots n_r)$, for every $\vec{a} \in d^N$ we map \vec{a} to a word $\vec{\hat{a}} = h(\vec{a}) \in d^{|\hat{v}_r|}$ and let $f(\vec{a}) = c(\vec{\hat{a}})$.
- Intuitively, h is defined by connecting each element of N, say n₀ + · · · + n_{s-1} + m, to a set P_{xm}(v̂_s) and copy the value a(n₀ + · · · + n_{s-1} + m) to â(t) for all t ∈ P_{xm}(v̂_s). More precisely,
 Suppose a = a₀ · · · a_r where |a_s| = n_s for all s ≤ r. Let

$$\hat{a}_s = \hat{v}_s(\vec{a}_s) \upharpoonright_{|\hat{v}_{s-1}|}^{|\hat{v}_s|-1}$$
 and $h(\vec{a}) = \vec{a}_0 \cdots \vec{a}_r$.

Lu Liu Email: g.jiayi.liu@gmail.com (The combinatorial equivalence of a co

April 28, 2021

20/29

Theorem 17

The following two classes of oracles are equal:

$$\{D \subseteq \omega : D' \text{ computes a member in } ENSH_k^d. \}$$

$$\{D \subseteq \omega : D \text{ computes a } VWI(d,k)\text{-instance } c$$

 that does not admit a c-computable solution.

Lu Liu Email: g.jiayi.liu@gmail.com (The combinatorial equivalence of a co April 28, 2021 21/29

イロト イヨト イヨト イヨト

ъ

Relation to Hales-Jewett theorem

 \blacktriangleright Disproving $ENSH_k^d$ on certain sequences is a generalization of Hales-Jewett theorem.

イロト イポト イヨト イヨト

æ

Relation to Hales-Jewett theorem

- ▶ Disproving $ENSH_k^d$ on certain sequences is a generalization of Hales-Jewett theorem.
- ▶ For $d, k, n \in \omega$, let HJ(d, k, n) denote the assertion that

there exists an N such that for every $c: d^N \to k$, there exists an n-variable word v of length N monochromatic for c.

Relation to Hales-Jewett theorem

- ▶ Disproving $ENSH_k^d$ on certain sequences is a generalization of Hales-Jewett theorem.
- For $d, k, n \in \omega$, let HJ(d, k, n) denote the assertion that

there exists an N such that for every $c: d^N \to k$,

there exists an n-variable word v of length N monochromatic for c .

(人間) とうき くうり

22/29

Theorem 18 (Hales-Jewett theorem)

For every $d, k, n \in \omega$, HJ(d, k, n) holds.

Lu Liu Email: g.jiayi.liu@gmail.com (The combinatorial equivalence of a co April 28, 2021

- ▶ HJ theorem is of fundamental importance in combinatorics.
- ▶ HJ theorem \Rightarrow van der Waerden theorem (which says that for every partition of integers, every $r \in \omega$, there exists an arithmetical progression of length r in one part).

- ▶ HJ theorem is of fundamental importance in combinatorics.
- ▶ HJ theorem \Rightarrow van der Waerden theorem (which says that for every partition of integers, every $r \in \omega$, there exists an arithmetical progression of length r in one part).
- ▶ The density HJ theorem \Rightarrow the density van der Waerden theorem, namely Szemerédi's theorem, which asserts that for every set A of integers of positive density (meaning $\limsup_{n\to\infty} |A \cap n|/n > 0$), every $r \in \omega$, there exists an arithmetical progression in A of length r (conjectured by Erdős and Turán).

- 4 周 ト 4 ヨ ト 4 ヨ ト

23/29

▶ We show that: $\forall d, k, n[n^{\omega} \notin ENSH_k^d] \Leftrightarrow HJ$ theorem. ▶ Actually,

> $n^{\omega} \notin ENSH_k^d \Rightarrow HJ(d,k,n)$ and $HJ(d^n,k,1) \Rightarrow n^{\omega} \notin ENSH_k^d.$

イロト イヨト イヨト イヨト 三日

For every $d, k, n \in \omega$, $n^{\omega} \notin ENSH_k^d$.

Proof.

• For example we prove this for d, n = 2.

For every
$$d, k, n \in \omega, n^{\omega} \notin ENSH_k^d$$
.

Proof.

- For example we prove this for d, n = 2.
- Using HJ(4, k, 1), let r be the witness.
- Show that $ENSH_k^d(2 \cdots 2)$ does not hold.

r many

For every
$$d, k, n \in \omega, n^{\omega} \notin ENSH_k^d$$
.

Proof.

- For example we prove this for d, n = 2.
- Using HJ(4, k, 1), let r be the witness.
- Show that $ENSH_k^d(2 \underbrace{\cdots}_{r \text{ many}} 2)$ does not hold.
- ▶ Code 2^{2r} into 4^r where $\vec{a}(2t)\vec{a}(2t+1)$ (00, 01, 10, 11 respectively) is coded into $\vec{a}(t)$ (0, 1, 2, 3 respectively).

For every
$$d, k, n \in \omega, n^{\omega} \notin ENSH_k^d$$
.

Proof.

- For example we prove this for d, n = 2.
- Using HJ(4, k, 1), let r be the witness.
- Show that $ENSH_k^d(2 \underbrace{\cdots}_{r \text{ many}} 2)$ does not hold.
- ▶ Code 2^{2r} into 4^r where $\vec{a}(2t)\vec{a}(2t+1)$ (00, 01, 10, 11 respectively) is coded into $\vec{a}(t)$ (0, 1, 2, 3 respectively).
- Given a coloring $c: 2^{2r} \to k$, consider $\hat{c}: 4^r \ni \hat{\vec{a}} \mapsto c(\vec{a})$.
- ▶ Let \hat{v} be a 1-variable word monochromatic for \hat{c} and consider v such that $v(2t)v(2t+1) = 00, 01, 10, 11, x_0x_1$ respectively if $\hat{v}(t) = 0, 1, 2, 3, x_0$ respectively.

The following theorem generalizes HJ theorem on d = 2, k = 2, n = 2.

Theorem 20 ([Liu, 2020])

For every sequence $n_0n_1\cdots$ of positive integers with $n_s = 2$ for some s, $n_0n_1\cdots\notin ENSH_2^2$.

イロト イポト イヨト イヨト 三日

Lemma 21

There exists a sequence $n_0 \cdots n_r$ such that $ENSH_2^2(n_0 \cdots n_r)$ holds but $ENSH_2^2(n_0 \cdots n_r n)$ does not hold for all n.

Proof.

For example, $n_0 \cdots n_r = 1$ and note that $ENSH_2^2(1)$ is true but $ENSH_2^2(1n)$ is not true for any n.

Some open questions

Question 22

▶ Does $ENSH_2^2(2223)$ holds? Does $ENSH_2^2(222n)$ holds for sufficiently large n?

▶ Is it true that for every $n, \hat{n} ENSH_2^2(n \ \underline{\hat{n} \cdots \hat{n}})$ does not hold.

 $n{+}1$ many

イロト イポト イヨト イヨト 三日

Many thanks!

Lu Liu Email: g. jiayi.liu@gmail.com (The combinatorial equivalence of a cc April 28, 2021 29/29

・ロト ・四ト ・ヨト ・ヨト

-2

Carlson, T. J. and Simpson, S. G. (1984). A dual form of ramsey's theorem. Advances in Mathematics, 53(3):265-290.

Liu, L. (2020).

The combinatorial equivalence of a computability theoretic question.

arXiv preprint arXiv:2012.13588.

Liu, L., Monin, B., and Patey, L. (2019).
 A computable analysis of variable words theorems.
 Proceedings of the American Mathematical Society, 147(2):823-834.

April 28, 2021

29/29

Miller, J. S. and Solomon, R. (2004). Effectiveness for infinite variable words and the dual ramsey theorem.

Archive for Mathematical Logic, 43(4):543–555.

Open questions in reverse mathematics.

On $ENSH_k^d$ and Hales-Jewett Theorem

Bulletin of Symbolic Logic, 17(03):431–454.

Lu Liu Email: g.jiayi.liu@gmail.com (The combinatorial equivalence of a co April 28, 2021 29/29

・ロト ・四ト ・ヨト ・ヨト

æ