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The previous notion Computably Hausdorff

Previous Definition
X is computably Hausdorff, if inequality on X is semi-decidable.

Characterisation (A. Pauly 2012)
Let X be an admissibly represented QCB1-space. TFAE:
I X is computably Hausdorff.
I The diagonal {(x , x) | x ∈ X} is co-c.e. closed.
I The embedding X ↪→ A(X ), x 7→ {x} is computable.
I The inclusion K(X ) ↪→ A(X ) is well-defined and computable.
I ∩ : K(X )×K(X )→ K(X ) is well-defined and computable.
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The previous notion An open question

Question (A. Pauly, Oberwolfach Report 1/2018, Question 3)
Is any computably compact, computably Hausdorff space also
computably regular?

Classical Theorem
Any compact Hausdorff space is regular.

Remember
I X is computably compact, if, for U open, ‘U = X?’ is

semi-decidable.
I X is computably regular, if, given x ∈ U ∈ O(X ), one can

computably select an open set V and a closed set A such
that x ∈ V ⊆ A ⊆ U.
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Does computably Hausdorff ∧ computably compact imply computably regular?

Answer: No!

Counterexample
Let ωM be the one-point compactification of a computable
metric space M that is not locally compact.
I ωM is computably Hausdorff and computably compact.
I But ωM is not topologically regular,
I hence not computably regular.

One-point compactification of M:
I Underlying set: ωM := M ∪ {ω}
I Topology: O(M) ∪ {ωM \ K |K compact in M}
I ωM has a canonical representation δωM derived from δM.
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The previous notion does not effectivize the classical notion

Main Problem
I Computable Hausdorffness ; topological Hausdorffness.

I By contrast:
I Computable compactness⇒ topological compactness.
I Computable regularity⇒ topological regularity.

I However:
Computable Hausdorffness⇒ sequential Hausdorffness.

Remark
Sequentially Hausdorff: every convergent sequence has a
unique limit.
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A new notion of effective Hausdorffness Naive attempt

Why not the following definition?
Call X effectively T2, if there are computable separators
U,V : X× X 99K O(X) s.t.

x 6= y =⇒ x ∈ U(x , y), y ∈ V(x , y), U(x , y) ∩ V(x , y) = ∅ .

Example
Any computable metric space has computable separators:

U(x , y) := Bd
(
x , d(x ,y)

2

)
, V(x , y) := Bd

(
y , d(x ,y)

2

)
.

Disadvantage
I U, V do not provide any finite separation information,

because any prefix of a standard name of an open set can be extended
to a name of the open set X .

I Semi-decidability of inequality is not implied.
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A new notion of effective Hausdorffness The naive attempt does not work

Counterexample
Define X by
I X :=

{
2a

∣∣a ∈ N
}
∪
{

2a + 1
∣∣a ∈ N \ H

}
,

where H is the Halting-Problem.
I δX(2a0ω) := 2a,

δX(2a+10ω) :=
{

2a + 1 if a /∈ H
2a if a ∈ H

.

Then
I U, V defined by

U(x , y) := {x}, V(x , y) := {y}

are computable separators for X.
I But inequality on X is not semi-decidable.
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A new notion of effective Hausdorffness Preliminaries

Basic facts from Computable Analysis / TTE
I Basic objects: represented spaces X = (X , δX).
I QCB = class of top. spaces that can be handled by TTE.
I QCB-space: a quotient of a countably based top. space.
I Example: the final topology of a TTE-representation is QCB.
I Effective QCB-space: a represented space X = (X , δX) s.t.
δX is computably admissible.

I Effective QCB-spaces have excellent closure properties:
Icartesian closed Ifinite limits Ifinite colimits

I From δX one derives computably admissible representations:
I θ+ for the open subsets of X
I ψ− for the closed subsets of X
I κ− for the compact subsets K of X, providing information

about open sets containing K
I κ+ for the non-empty compact subsets K of X, providing

information about open sets intersecting K
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A new notion of effective Hausdorffness Basic Idea

Basic Idea

Proposition
Let X be a Hausdorff QCB-space.
I X has a subtopology τ ⊆ O(X ) that

I has a countable base and is Hausdorff.
I Any such subtopology τ satisfies:

I τ |K = O(X )|K for any compact subspace K ∈ K(X ).
I (xn)n converges to x∞ in X iff

(a) (xn)n converges to x∞ wrt. τ &
(b) (xn)n is contained in some K ∈ K(X ).
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A new notion of effective Hausdorffness Witness of Hausdorffness

Definition
A computable witness of Hausdorffness for X is a sequence
(ui , vi)i in O(X)× O(X) such that:
I ui ∩ vi = ∅ for all i ∈ N.
I For all x 6= y , there is some i such that x ∈ ui , y ∈ vi .
I The maps i 7→ ui , i 7→ vi are computable wrt. θ+.
I It is called strong, if additionally

I {uj , vj | j ∈ N} is an effective base of some topology τ .
I For (i , j) one can compute k s.t. (uk , vk ) = (ui ∩ uj , vi ∪ vj).

Definition
A represented space X is an effectively Hausdorff QCB-space, if
I it has a computable witness of Hausdorffness &
I its representation δX is computably admissible.
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A new notion of effective Hausdorffness Properties

Example (Effectively Hausdorff QCB-space)
Any computable metric space.

Theorem
Let X and Y be effectively Hausdorff QCB-spaces.
I X is topologically Hausdorff.
I Inequality on X is semi-decidable,

hence X is computably Hausdorff according to the previous definition.

I X× Y and X⊕ Y are effectively Hausdorff.
I Any QCB-subspace of X is effectively Hausdorff.
I If Z has a computable dense sequence, then YZ is an

effectively Hausdorff QCB-space.
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A new notion of effective Hausdorffness Main result

Reformulation of A. Pauly’s Question
Is any computably compact, effectively Hausdorff QCB-space
also computably regular?

Answer: Yes.

Theorem
Let X be a computably compact, effectively Hausdorff QCB-space.
I X is computably regular.
I X has an effective countable base.
I If X has a computable dense sequence (αk )k , then X has a

metric d such that
I

(
X,d , α

)
is a computable metric space &

I its Cauchy representation is computably equivalent to δX.
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Compact overt choice Definition

Compact overt choice
I Selecting an element in a compact subset given by positive

information,
I i.e., the computational problem KVCY : K+(Y)⇒ Y,

KVCY[K ] := {y | y ∈ K} for K ∈ K+(Y) := K(Y) \ {∅}
where

I Y is a represented QCB-space,
I K+(Y) carries a positive representation like κ+.

16/27



Compact overt choice Properties

Proposition
Compact overt choice is computable wrt. κ+ for:
I [V. Brattka & P. Hertling 1994]

any computable metric space;
I [M. de Brecht & A. Pauly & Sch. 2019]

any computably Hausdorff, computable quasi-Polish space.

Proposition
Let Y ∈ QCB2 \ ωTop.
I Compact overt choice KVCY for Y is incomputable wrt. κ+.
I ACCN ≤top

W KVCY.

Remark
I ACCN: the problem all-or-co-unique choice for N
I ≤top

W : the topological version of Weihrauch reducibility
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Compact overt choice The powerspace K+b(Y)

How can we turn KVCY computable for Y /∈ ωTop?

Idea: Use a more informative representation for K+(Y).

Definition
Let Y be an effectively Hausdorff QCB-space.
I Define a representation κ+b for K+(Y) by

κ+b〈p,b〉 = K iff κ+(p) = K & K ⊆ κ−(b)

where κ+, κ− are the positive / negative representations for K+(Y).
I Define:

I K+b(Y) :=
(
K+(Y), κ+b

)
I K+(Y) :=

(
K+(Y), κ+

)
I K−(Y) :=

(
K(Y), κ−

)
Remark
I K+b(Y) is topological iff Y is compact.
I K+b(Y) has the convergence relation of a filter space.
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Compact overt choice Main result

Theorem
Let Y be an effectively Hausdorff QCB-space.
I Compact overt choice for Y is computable wrt. κ+b,
I i.e., there is a computable selector S : dom(κ+b)→ Y such

that S(p) ∈ κ+b(p).
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Multivalued functions Definition

Recap
I A multifunction (or computational problem) F is a relation

between represented spaces X,Y, written as F : X⇒ Y.
I X is the input space, Y is the output space of F .
I Notation: F [x ] :=

{
y ∈ Y

∣∣ (x , y) ∈ F
}

.

Recall
A represented space X is a set endowed with a representation
δX : NN 99K X.

Remark
We will assume every multifunction to be total, i.e. F [x ] 6= ∅ for
all x ∈ X.
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Computablility of multifunctions Definition

Recap
Let F : X⇒ Y be a total multifunction.
I F is called computable, if there is a computable realizer

g : NN 99K NN satisfying

δYg(p) ∈ F [δX(p)] for all p ∈ dom(δX).

I Diagram:
X

F ////

			

Y

dom(δX) g
//

δX

OOOO

dom(δY)

δY

OOOO

I F is called continuously realizable, if F has a continuous
realizer g.
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Characterising computable multifunctions Main result

Characterisation Theorem
Let X be a computable metric space and Y be an effectively
Hausdorff QCB-space. Let F : X⇒ Y be a total multifunction.
TFAE:
(a) F is computable.
(b) There is a computable function h : X→ K+b(Y) such that

∅ 6= h(x) ⊆ F [x ] for all x ∈ X.
(c) There are computable functions h+ : X→ K+(Y) and

hb : X→ K−(Y) such that
∅ 6= h+(x) ⊆ F [x ] ∩ hb(x) for all x ∈ X.

Remark
(a)=⇒ (b) holds for any represented QCB2-space Y.
(b)=⇒ (a) holds for any represented space X.
(a)=⇒ (b) does not hold for non-metrisable spaces X.
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Characterising realizable multifunctions The continuous version

Characterisation Theorem
Let X be a separable metric space, and Y be a QCB2-space.
Let F : X⇒ Y be a total multifunction.
TFAE:
(a) F has a continuous realizer.
(b)
(c) There are a lower semi-continuous function h+ : X→ K+(Y)

and an upper semi-continuous function hb : X→ K−(Y) s.t.
∅ 6= h+(x) ⊆ F [x ] ∩ hb(x) for all x ∈ X.

If additionally κ+b is admissible, then (b)⇐⇒ (a)⇐⇒ (c):
(b) There is a continuous function h : X→ K+b(Y) s.t.

∅ 6= h(x) ⊆ F [x ] for all x ∈ X.
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The powerspace K+b(Y) Properties

Proposition
Let Y be a QCB2-space.
I κ+b is not admissible, if Y ∈ ωTop2 \ ωTop3.
I κ+b is admissible, if Y is quasi-normal.

Remark
I Quasi-normal space = a QCB-space that arises as the

sequentialisation of a normal space.
I Examples:

I All separable metric spaces
I The Kleene-Kreisel spaces NNN

,NNNN

, . . .
I Many Hausdorff spaces used in Computable Functional

Analysis
I Quasi-normal spaces have excellent closure properties:

Icartesian closed Icountable limits Icountable colimits
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Summary

Summary
I Semi-decidability of inequality does not imply topological

Hausdorffness.
I The new notion of effective Hausdorffness implies

I the previous notion,
I topological Hausdorffness.

I It admits effective versions of some classical theorems
from topology.

I The powerspace K+b(Y) allows us to characterise
computable multifunctions from computable metric spaces
to effective Hausdorff QCB-spaces.

I Open problem:
Find a characterisation of computable multifunctions on
input spaces that are not computable metric spaces.
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