Effectively Hausdorff Spaces

Matthias Schröder

Oberwolfach Workshop 2117

on Computability Theory

April 2021

Survey

- \triangleright The previous notion of Computable Hausdorffness
- \triangleright A new definition of effective Hausdorffness
- \triangleright Compact overt choice for effectively Hausdorff spaces
- \triangleright A characterisation of computable multifunctions

Previous Definition

X is *computably Hausdorff*, if inequality on *X* is semi-decidable.

Characterisation (A. Pauly 2012)

Let X be an admissibly represented $QCB₁$ -space. TFAE:

- \triangleright *X* is computably Hausdorff.
- **►** The diagonal $\{(x, x) | x \in X\}$ is co-c.e. closed.
- If The embedding $X \hookrightarrow A(X)$, $X \mapsto \{x\}$ is computable.
- If The inclusion $\mathcal{K}(X) \hookrightarrow \mathcal{A}(X)$ is well-defined and computable.
- \triangleright $\cap: \mathcal{K}(X) \times \mathcal{K}(X) \rightarrow \mathcal{K}(X)$ is well-defined and computable.

Question (A. Pauly, Oberwolfach Report 1/2018, Question 3) Is any computably compact, computably Hausdorff space also computably regular?

Classical Theorem

Any compact Hausdorff space is regular.

Remember

- \triangleright *X* is *computably compact*, if, for *U* open, $U = X$?' is semi-decidable.
- \triangleright *X* is *computably regular*, if, given *x* ∈ *U* ∈ O(*X*), one can computably select an open set *V* and a closed set *A* such that $x \in V \subset A \subset U$.

Does *computably Hausdorff* ∧ *computably compact* imply *computably regular*?

Answer: No!

Counterexample

Let ω M be the one-point compactification of a computable metric space M that is *not* locally compact.

- \triangleright ω M is computably Hausdorff and computably compact.
- \blacktriangleright But ω **M** is *not* topologically regular,
- \blacktriangleright hence not computably regular.

One-point compactification of M**:**

- \triangleright Underlying set: $ωM := M ∪ {ω}$
- **► Topology:** O(M) \cup { ω M \ K | K compact in M}
- \triangleright ωM has a canonical representation $\delta_{\omega M}$ derived from $\delta_{\rm M}$.

Main Problem

- \triangleright Computable Hausdorffness \Rightarrow topological Hausdorffness.
- \triangleright By contrast:
	- \triangleright Computable compactness \Rightarrow topological compactness.
	- \triangleright Computable regularity \Rightarrow topological regularity.
- **However:**

Computable Hausdorffness \Rightarrow sequential Hausdorffness.

Remark

Sequentially Hausdorff: every convergent sequence has a unique limit.

A new notion of effective Hausdorffness

Why not the following definition?

Call X *effectively T*2, if there are computable *separators* $U, V: X \times X \longrightarrow O(X)$ s.t.

 $x \neq y \Longrightarrow x \in U(x, y), y \in V(x, y), U(x, y) \cap V(x, y) = \emptyset$.

Example

Any computable metric space has computable separators:

$$
U(x,y):=B_d\big(x,\tfrac{d(x,y)}{2}\big),\ \ V(x,y):=B_d\big(y,\tfrac{d(x,y)}{2}\big)\,.
$$

Disadvantage

- ► U, V do not provide any *finite* separation information, because any prefix of a standard name of an open set can be extended to a name of the open set *X*.
- \triangleright Semi-decidability of inequality is not implied.

Counterexample

Define X by

 \triangleright $X := \{2a \mid a \in \mathbb{N}\} \cup \{2a+1 \mid a \in \mathbb{N} \setminus H\},\$ where H is the Halting-Problem.

$$
\triangleright \delta_X(2a0^{\omega}) := 2a, \delta_X(2a+10^{\omega}) := \left\{ \begin{array}{ll} 2a+1 & \text{if } a \notin H \\ 2a & \text{if } a \in H \end{array} \right. .
$$

Then

 \triangleright U, V defined by

$$
U(x,y):=\{x\}, V(x,y):=\{y\}
$$

are computable separators for X.

Eut inequality on X is not semi-decidable.

Basic facts from Computable Analysis / TTE

- Basic objects: represented spaces $X = (X, \delta_X)$.
- \triangleright QCB = class of top. spaces that can be handled by TTE.
- ► *QCB-space*: a **q**uotient of a **c**ountably **b**ased top. space.
- Example: the final topology of a TTE-representation is QCB .
- **Fifective QCB-space:** a represented space $X = (X, \delta_X)$ s.t. δ _x is computably admissible.
- \triangleright Effective QCB-spaces have excellent closure properties:

 \triangleright cartesian closed \triangleright finite limits \triangleright finite colimits

- From δ _x one derives computably admissible representations:
	- $\rightarrow \theta_+$ for the open subsets of X
	- $\triangleright \psi_$ for the closed subsets of X
	- \triangleright κ ₋ for the compact subsets K of X, providing information about open sets containing *K*
	- \triangleright κ_+ for the non-empty compact subsets *K* of X, providing information about open sets intersecting *K*

Basic Idea

Proposition

Let *X* be a Hausdorff QCB-space.

- \triangleright *X* has a subtopology $\tau \subset O(X)$ that
	- \triangleright has a countable base and is Hausdorff.
- **Any such subtopology** τ satisfies:
	- \blacktriangleright $\tau|_K = O(X)|_K$ for any compact subspace $K \in K(X)$.
	- ► $(X_n)_n$ converges to X_{∞} in X iff
		- (a) $(x_n)_n$ converges to x_∞ wrt. τ &

(b) $(x_n)_n$ is contained in some $K \in K(X)$.

Definition

A *computable witness of Hausdorffness* for X is a sequence $(u_i, v_i)_i$ in $O(X) \times O(X)$ such that:

- \triangleright u_{*i*} ∩ v_{*i*} = \emptyset for all *i* ∈ N.
- For all $x \neq y$, there is some *i* such that $x \in u_i$, $y \in v_i$.
- **►** The maps $i \mapsto u_i$, $i \mapsto v_i$ are computable wrt. θ_+ .
- It is called *strong*, if additionally
	- \bullet { u_j , v_j | $j \in \mathbb{N}$ } is an effective base of some topology τ .
	- **►** For (i, j) one can compute k s.t. $(u_k, v_k) = (u_i \cap u_j, v_i \cup v_j)$.

Definition

A represented space X is an *effectively Hausdorff QCB-space*, if

- \triangleright it has a computable witness of Hausdorffness &
- its representation $\delta_{\mathbf{x}}$ is computably admissible.

Example (Effectively Hausdorff QCB-space) Any computable metric space.

Theorem

Let X and Y be effectively Hausdorff QCB-spaces.

- \triangleright X is topologically Hausdorff.
- Inequality on X is semi-decidable, hence X is computably Hausdorff according to the previous definition.
- \triangleright X \times Y and X \oplus Y are effectively Hausdorff.
- Any QCB-subspace of X is effectively Hausdorff.
- If Z has a computable dense sequence, then Y^Z is an effectively Hausdorff QCB-space.

Reformulation of A. Pauly's Question

Is any computably compact, *effectively Hausdorff QCB-space* also computably regular?

Answer: Yes.

Theorem

Let X be a computably compact, effectively Hausdorff QCB-space.

- \triangleright X is computably regular.
- \triangleright X has an effective countable base.
- **If X has a computable dense sequence** $(\alpha_k)_k$ **, then X has a** metric *d* such that
	- \blacktriangleright (X, d, α) is a computable metric space &
	- its Cauchy representation is computably equivalent to $\delta_{\mathbf{x}}$.

Compact overt choice

Compact overt choice

- \triangleright Selecting an element in a compact subset given by positive information,
- \triangleright i.e., the computational problem KVC_Y: K₊(Y) \Rightarrow Y,

 $\mathrm{KVC}_Y[K] := \{ y \mid y \in K \}$ for $K \in \mathrm{K}_+(Y) := \mathrm{K}(Y) \setminus \{ \emptyset \}$

where

- \blacktriangleright Y is a represented QCB-space,
- \triangleright K₊(Y) carries a *positive* representation like κ_+ .

Proposition

Compact overt choice is computable wrt. κ_+ for:

- \triangleright [V. Brattka & P. Hertling 1994] any computable metric space;
- \triangleright [M. de Brecht & A. Pauly & Sch. 2019] any computably Hausdorff, computable quasi-Polish space.

Proposition

Let $Y \in \text{QCB}_2 \setminus \omega$ Top.

- **Compact overt choice KVC_Y** for Y is incomputable wrt. κ_{+} .
- \blacktriangleright ACC_N \leq^{top}_{W} KVC_Y.

Remark

- \triangleright ACC_N: the problem *all-or-co-unique choice* for N
- $\blacktriangleright \leq^{\text{top}}_{\text{W}}$: the topological version of Weihrauch reducibility

How can we turn KVC_Y **computable for** $Y \notin \omega$ Top?

Idea: Use a more informative representation for $K_{+}(Y)$.

Definition

Let Y be an effectively Hausdorff QCB-space.

Define a representation κ_{+b} **for K₊(Y) by**

$$
\kappa_{+b}\langle p,b\rangle = K \quad \text{iff} \quad \kappa_+(p) = K \& K \subseteq \kappa_-(b)
$$

where κ_+,κ_- are the positive / negative representations for $K_+(Y)$.

 \blacktriangleright Define:

$$
\quad \blacktriangleright \ \mathcal{K}_{+b}(Y):=\big(K_+(Y),\kappa_{+b}\big)
$$

$$
\quad \blacktriangleright \ \mathcal{K}_+(Y) \ \ := \big(K_+(Y), \kappa_+ \big)
$$

 $\triangleright \ \mathcal{K}_-(Y) \ := \big(K(Y), \kappa_- \big)$

Remark

- \triangleright $\mathcal{K}_{+b}(Y)$ is topological iff Y is compact.
- \triangleright $\mathcal{K}_{+b}(Y)$ has the convergence relation of a filter space.

Theorem

Let Y be an effectively Hausdorff QCB-space.

- **Compact overt choice for Y is computable wrt.** κ_{+b} ,
- **►** i.e., there is a computable selector S : $dom(\kappa_{+b})$ → Y such that $S(p) \in \kappa_{+b}(p)$.

Characterising computable multifunctions

Recap

- \triangleright A *multifunction* (or *computational problem*) \triangleright is a relation between represented spaces X, Y, written as $F: X \rightrightarrows Y$.
- ► X is the *input space*, Y is the *output space* of F.
- ► Notation: $F[x] := {y \in Y | (x, y) \in F}.$

Recall

A *represented space* X is a set endowed with a representation $\delta_X \colon \mathbb{N}^{\mathbb{N}} \dashrightarrow X.$

Remark

We will assume every multifunction to be *total*, i.e. $F[x] \neq \emptyset$ for all $x \in X$.

Recap

Let $F: X \rightrightarrows Y$ be a total multifunction.

► F is called *computable*, if there is a computable *realizer* $g \colon \mathbb{N}^\mathbb{N} \dashrightarrow \mathbb{N}^\mathbb{N}$ satisfying

 $\delta_{\mathsf{Y}}g(p) \in F[\delta_{\mathsf{X}}(p)]$ for all $p \in \text{dom}(\delta_{\mathsf{X}})$.

^I *F* is called *continuously realizable*, if *F* has a *continuous* realizer *g*.

Characterisation Theorem

Let X be a computable metric space and Y be an effectively Hausdorff QCB-space. Let $F: X \rightrightarrows Y$ be a total multifunction. TFAE:

- (a) *F* is computable.
- (b) There is a computable function $h: X \to \mathcal{K}_{+b}(Y)$ such that $\emptyset \neq h(x) \subseteq F[x]$ for all $x \in X$.
- (c) There are computable functions $h_+ : X \to \mathcal{K}_+(Y)$ and $h_h: X \to \mathcal{K}_-(Y)$ such that

 $\emptyset \neq h_{+}(x) \subseteq F[x] \cap h_{b}(x)$ for all $x \in X$.

Remark

(a) \Longrightarrow (b) holds for any represented QCB₂-space Y.

(b) \Longrightarrow (a) holds for any represented space X.

 $(a) \Longrightarrow$ (b) does not hold for non-metrisable spaces X.

Characterisation Theorem

Let X be a separable metric space, and Y be a $QCB₂$ -space. Let $F: X \rightrightarrows Y$ be a total multifunction. TFAE:

(a) *F* has a continuous realizer.

(b)

(c) There are a lower semi-continuous function $h_+ : X \to \mathcal{K}_+(Y)$ and an upper semi-continuous function $h_b: X \to \mathcal{K}_-(Y)$ s.t.

 $\emptyset \neq h_{+}(x) \subseteq F[x] \cap h_{b}(x)$ for all $x \in X$.

If additionally κ_{+b} is admissible, then (b) \Longleftrightarrow (a) \Longleftrightarrow (c): (b) There is a continuous function $h: X \to \mathcal{K}_{+b}(Y)$ s.t. $\emptyset \neq h(x) \subset F[x]$ for all $x \in X$.

Proposition

Let Y be a $QCB₂$ -space.

- \blacktriangleright κ_{+b} is not admissible, if $Y \in \omega \mathsf{Top}_2 \setminus \omega \mathsf{Top}_3$.
- \triangleright κ_{+b} is admissible, if Y is quasi-normal.

Remark

- \triangleright Quasi-normal space $=$ a QCB-space that arises as the sequentialisation of a normal space.
- \blacktriangleright Examples:
	- \blacktriangleright All separable metric spaces
	- **Find Kleene-Kreisel spaces** $\mathbb{N}^{\mathbb{N}^{\mathbb{N}}}, \mathbb{N}^{\mathbb{N}^{\mathbb{N}^{\mathbb{N}}}}$ **,...**
	- \triangleright Many Hausdorff spaces used in Computable Functional Analysis

 \triangleright Quasi-normal spaces have excellent closure properties:

 \triangleright cartesian closed \triangleright countable limits \triangleright countable colimits

Summary

Summary

- \triangleright Semi-decidability of inequality does not imply topological Hausdorffness.
- \blacktriangleright The new notion of effective Hausdorffness implies
	- \blacktriangleright the previous notion,
	- \blacktriangleright topological Hausdorffness.
- \blacktriangleright It admits effective versions of some classical theorems from topology.
- \blacktriangleright The powerspace $\mathcal{K}_{+b}(Y)$ allows us to characterise computable multifunctions from computable metric spaces to effective Hausdorff QCB-spaces.
- \triangleright Open problem:

Find a characterisation of computable multifunctions on input spaces that are not computable metric spaces.

Literature

Literature

- ► V. Brattka, P. Hertling: *Continuity and Computability of Relations*. Informatik Berichte 164, FernUniversität Hagen (1994)
- ▶ M. de Brecht, A. Pauly, Sch.: Overt choice.
	- ▶ Computability $9(3-4)$, pp. 169–191 (2020)
	- \blacktriangleright arXiv: 1902.05926v1
- ▶ T. Grubba, K. Weihrauch, Sch.: *Computable metrization.* Math. Log. Q., 53(4-5), pp. 381–395 (2007)
- ▶ A. Pauly: *On the topological aspects of the theory of represented spaces*.
	- ► Computability 5(2), pp. 159–180 (2016)
	- \blacktriangleright arXiv: 1204.3763v3
- ▶ Sch.: *Admissibly Represented Spaces and QCB-Spaces.*
	- \triangleright in: Handbook of Computability and Complexity in Analysis, Springer Verlag, to appear in May 2021
	- \blacktriangleright arXiv: 2004.09450v1