Effectively Hausdorff Spaces

Matthias Schröder

Oberwolfach Workshop 2117

on Computability Theory

April 2021

Survey

- The previous notion of Computable Hausdorffness
- A new definition of effective Hausdorffness
- Compact overt choice for effectively Hausdorff spaces
- A characterisation of computable multifunctions

Previous Definition

X is *computably Hausdorff*, if inequality on X is semi-decidable.

Characterisation (A. Pauly 2012)

Let X be an admissibly represented QCB_1 -space. TFAE:

- X is computably Hausdorff.
- The diagonal $\{(x, x) | x \in X\}$ is co-c.e. closed.
- The embedding $X \hookrightarrow \mathcal{A}(X), x \mapsto \{x\}$ is computable.
- The inclusion $\mathcal{K}(X) \hookrightarrow \mathcal{A}(X)$ is well-defined and computable.
- \cap : $\mathcal{K}(X) \times \mathcal{K}(X) \to \mathcal{K}(X)$ is well-defined and computable.

Question (A. Pauly, Oberwolfach Report 1/2018, Question 3) Is any computably compact, computably Hausdorff space also computably regular?

Classical Theorem

Any compact Hausdorff space is regular.

Remember

- ➤ X is computably compact, if, for U open, 'U = X?' is semi-decidable.
- X is computably regular, if, given x ∈ U ∈ O(X), one can computably select an open set V and a closed set A such that x ∈ V ⊆ A ⊆ U.

Does computably Hausdorff \land computably compact imply computably regular?

Answer: No!

Counterexample

Let ωM be the one-point compactification of a computable metric space M that is *not* locally compact.

- ωM is computably Hausdorff and computably compact.
- ▶ But *ω*M is *not* topologically regular,
- hence not computably regular.

One-point compactification of M:

- Underlying set: $\omega M := M \cup \{\omega\}$
- Topology: $O(M) \cup \{\omega M \setminus K \mid K \text{ compact in } M\}$
- ω M has a canonical representation $\delta_{\omega M}$ derived from δ_{M} .

Main Problem

- ► Computable Hausdorffness ⇒ topological Hausdorffness.
- By contrast:
 - Computable compactness \Rightarrow topological compactness.
 - Computable regularity \Rightarrow topological regularity.
- However:

Computable Hausdorffness \Rightarrow sequential Hausdorffness.

Remark

Sequentially Hausdorff: every convergent sequence has a unique limit.

A new notion of effective Hausdorffness

Why not the following definition?

Call X *effectively* T_2 , if there are computable *separators* U, V : X × X --- O(X) s.t.

 $x \neq y \Longrightarrow x \in \mathrm{U}(x,y), y \in \mathrm{V}(x,y), \mathrm{U}(x,y) \cap \mathrm{V}(x,y) = \emptyset.$

Example

Any computable metric space has computable separators:

$$\mathrm{U}(x,y) := B_d\big(x, \frac{d(x,y)}{2}\big), \ \mathrm{V}(x,y) := B_d\big(y, \frac{d(x,y)}{2}\big).$$

Disadvantage

- ► U, V do not provide any *finite* separation information, because any prefix of a standard name of an open set can be extended to a name of the open set *X*.
- Semi-decidability of inequality is not implied.

Counterexample

Define X by

► $X := \{2a \mid a \in \mathbb{N}\} \cup \{2a + 1 \mid a \in \mathbb{N} \setminus H\},\$ where H is the Halting-Problem.

$$\delta_{\mathbf{X}}(2a \, 0^{\omega}) := 2a, \delta_{\mathbf{X}}(2a+1 \, 0^{\omega}) := \begin{cases} 2a+1 & \text{if } a \notin \mathbf{H} \\ 2a & \text{if } a \in \mathbf{H} \end{cases}$$

Then

U, V defined by

$$U(x, y) := \{x\}, V(x, y) := \{y\}$$

.

are computable separators for X.

But inequality on X is not semi-decidable.

Basic facts from Computable Analysis / TTE

- ► Basic objects: represented spaces $X = (X, \delta_X)$.
- ▶ QCB = class of top. spaces that can be handled by TTE.
- ► *QCB-space*: a **q**uotient of a **c**ountably **b**ased top. space.
- Example: the final topology of a TTE-representation is QCB.
- Effective QCB-space: a represented space X = (X, δ_X) s.t.
 δ_X is computably admissible.
- Effective QCB-spaces have excellent closure properties:

cartesian closed > finite limits > finite colimits

- From δ_X one derives computably admissible representations:
 - θ_+ for the open subsets of X
 - ψ_{-} for the closed subsets of X
 - κ₋ for the compact subsets K of X, providing information about open sets containing K
 - κ₊ for the non-empty compact subsets K of X, providing information about open sets intersecting K

Basic Idea

Proposition

Let X be a Hausdorff QCB-space.

- X has a subtopology $\tau \subseteq O(X)$ that
 - has a countable base and is Hausdorff.
- Any such subtopology τ satisfies:
 - $\tau|_{K} = O(X)|_{K}$ for any compact subspace $K \in K(X)$.
 - $(x_n)_n$ converges to x_∞ in X iff
 - (a) $(x_n)_n$ converges to x_∞ wrt. τ &

(b) $(x_n)_n$ is contained in some $K \in K(X)$.

Definition

A *computable witness of Hausdorffness* for X is a sequence $(u_i, v_i)_i$ in $O(X) \times O(X)$ such that:

- $u_i \cap v_i = \emptyset$ for all $i \in \mathbb{N}$.
- ▶ For all $x \neq y$, there is some *i* such that $x \in u_i$, $y \in v_i$.
- The maps $i \mapsto u_i$, $i \mapsto v_i$ are computable wrt. θ_+ .
- It is called strong, if additionally
 - $\{u_j, v_j | j \in \mathbb{N}\}$ is an effective base of some topology τ .
 - ▶ For (i, j) one can compute k s.t. $(u_k, v_k) = (u_i \cap u_j, v_i \cup v_j)$.

Definition

A represented space X is an *effectively Hausdorff QCB-space*, if

- it has a computable witness of Hausdorffness &
- its representation δ_X is computably admissible.

Example (Effectively Hausdorff QCB-space) Any computable metric space.

Theorem

Let X and Y be effectively Hausdorff QCB-spaces.

- X is topologically Hausdorff.
- Inequality on X is semi-decidable, hence X is computably Hausdorff according to the previous definition.
- $X \times Y$ and $X \oplus Y$ are effectively Hausdorff.
- Any QCB-subspace of X is effectively Hausdorff.
- If Z has a computable dense sequence, then Y^Z is an effectively Hausdorff QCB-space.

Reformulation of A. Pauly's Question

Is any computably compact, *effectively Hausdorff QCB-space* also computably regular?

Answer: Yes.

Theorem

Let X be a computably compact, effectively Hausdorff QCB-space.

- X is computably regular.
- X has an effective countable base.
- If X has a computable dense sequence (*α_k*)_k, then X has a metric *d* such that
 - (X, d, α) is a computable metric space &
 - its Cauchy representation is computably equivalent to δ_X .

Compact overt choice

Compact overt choice

- Selecting an element in a compact subset given by positive information,
- ► i.e., the computational problem $KVC_Y : K_+(Y) \rightrightarrows Y$,

 $\mathrm{KVC}_{\mathsf{Y}}[\mathcal{K}] := \{ y \, | \, y \in \mathcal{K} \} \quad \text{for } \mathcal{K} \in \mathrm{K}_+(\mathsf{Y}) := \mathrm{K}(\mathsf{Y}) \setminus \{ \emptyset \}$

where

- Y is a represented QCB-space,
- $K_+(Y)$ carries a *positive* representation like κ_+ .

Properties

Proposition

Compact overt choice is computable wrt. κ_+ for:

- [V. Brattka & P. Hertling 1994] any computable metric space;
- [M. de Brecht & A. Pauly & Sch. 2019] any computably Hausdorff, computable quasi-Polish space.

Proposition

Let $Y \in QCB_2 \setminus \omega$ Top.

- Compact overt choice KVC_Y for Y is incomputable wrt. κ₊.
- $ACC_{\mathbb{N}} \leq^{top}_{W} KVC_{Y}$.

Remark

- $ACC_{\mathbb{N}}$: the problem *all-or-co-unique choice* for \mathbb{N}
- \leq^{top}_{W} : the topological version of Weihrauch reducibility

How can we turn KVC_Y computable for $Y \notin \omega$ Top?

Idea: Use a more informative representation for $K_+(Y)$.

Definition

Let Y be an effectively Hausdorff QCB-space.

• Define a representation κ_{+b} for $K_+(Y)$ by

$$\kappa_{+b}\langle p,b
angle = K \quad \text{iff} \quad \kappa_+(p) = K \And K \subseteq \kappa_-(b)$$

where κ_+,κ_- are the positive/negative representations for $\mathrm{K}_+(Y).$

Define:

$$\blacktriangleright \ \mathcal{K}_{+b}(\mathsf{Y}) := (\mathsf{K}_{+}(\mathsf{Y}), \kappa_{+b})$$

$$\blacktriangleright \ \mathcal{K}_+(\mathsf{Y}) := (\mathsf{K}_+(\mathsf{Y}), \kappa_+)$$

•
$$\mathcal{K}_{-}(\mathbf{Y}) := (\mathbf{K}(\mathbf{Y}), \kappa_{-})$$

Remark

- $\mathcal{K}_{+b}(Y)$ is topological iff Y is compact.
- $\mathcal{K}_{+b}(Y)$ has the convergence relation of a filter space.

Theorem

Let Y be an effectively Hausdorff QCB-space.

- Compact overt choice for Y is computable wrt. κ_{+b},
- i.e., there is a computable selector S: dom(κ_{+b}) → Y such that S(p) ∈ κ_{+b}(p).

Characterising computable multifunctions

Definition

Recap

- A multifunction (or computational problem) F is a relation between represented spaces X, Y, written as F: X ⇒ Y.
- ► X is the *input space*, Y is the *output space* of *F*.
- Notation: $F[x] := \{ y \in Y \mid (x, y) \in F \}.$

Recall

A represented space X is a set endowed with a representation $\delta_X \colon \mathbb{N}^{\mathbb{N}} \dashrightarrow X$.

Remark

We will assume every multifunction to be *total*, i.e. $F[x] \neq \emptyset$ for all $x \in X$.

Definition

Recap

Let $F : X \Rightarrow Y$ be a total multifunction.

F is called *computable*, if there is a computable *realizer* g: N^N --→ N^N satisfying

 $\delta_Y g(p) \in F[\delta_X(p)]$ for all $p \in dom(\delta_X)$.

► *F* is called *continuously realizable*, if *F* has a *continuous* realizer *g*.

Characterisation Theorem

Let X be a computable metric space and Y be an effectively Hausdorff QCB-space. Let $F: X \rightrightarrows Y$ be a total multifunction. TFAE:

- (a) F is computable.
- (b) There is a computable function $h: X \to \mathcal{K}_{+b}(Y)$ such that $\emptyset \neq h(x) \subset F[x]$ for all $x \in Y$

 $\emptyset \neq h(x) \subseteq F[x]$ for all $x \in X$.

(c) There are computable functions $h_+ \colon X \to \mathcal{K}_+(Y)$ and $h_b \colon X \to \mathcal{K}_-(Y)$ such that

 $\emptyset \neq h_+(x) \subseteq F[x] \cap h_{\mathrm{b}}(x) \quad ext{ for all } x \in \mathsf{X}.$

Remark

(a) \Longrightarrow (b) holds for any represented QCB₂-space Y.

(b) \Longrightarrow (a) holds for any represented space X.

(a) \Longrightarrow (b) does not hold for non-metrisable spaces X.

Characterisation Theorem

Let X be a separable metric space, and Y be a QCB₂-space. Let $F: X \Rightarrow Y$ be a total multifunction. TFAE:

(a) F has a continuous realizer.

(b)

(c) There are a lower semi-continuous function $h_+: X \to \mathcal{K}_+(Y)$ and an upper semi-continuous function $h_b: X \to \mathcal{K}_-(Y)$ s.t. $\emptyset \neq h_+(x) \subseteq F[x] \cap h_b(x)$ for all $x \in X$.

If additionally κ_{+b} is admissible, then (b) \iff (a) \iff (c): (b) There is a continuous function $h: X \to \mathcal{K}_{+b}(Y)$ s.t. $\emptyset \neq h(x) \subseteq F[x]$ for all $x \in X$. The powerspace $\mathcal{K}_{+b}(\mathsf{Y})$

Proposition

Let Y be a QCB₂-space.

- κ_{+b} is not admissible, if $Y \in \omega \operatorname{Top}_2 \setminus \omega \operatorname{Top}_3$.
- κ_{+b} is admissible, if Y is quasi-normal.

Remark

- Quasi-normal space = a QCB-space that arises as the sequentialisation of a normal space.
- Examples:
 - All separable metric spaces
 - \blacktriangleright The Kleene-Kreisel spaces $\mathbb{N}^{\mathbb{N}^{\mathbb{N}}},\mathbb{N}^{\mathbb{N}^{\mathbb{N}^{\mathbb{N}}}},\ldots$
 - Many Hausdorff spaces used in Computable Functional Analysis

Quasi-normal spaces have excellent closure properties:

cartesian closed countable limits countable colimits

Summary

Summary

- Semi-decidability of inequality does not imply topological Hausdorffness.
- The new notion of effective Hausdorffness implies
 - the previous notion,
 - topological Hausdorffness.
- It admits effective versions of some classical theorems from topology.
- The powerspace K_{+b}(Y) allows us to characterise computable multifunctions from computable metric spaces to effective Hausdorff QCB-spaces.
- Open problem:

Find a characterisation of computable multifunctions on input spaces that are not computable metric spaces.

Literature

Literature

- V. Brattka, P. Hertling: Continuity and Computability of Relations. Informatik Berichte 164, FernUniversität Hagen (1994)
- M. de Brecht, A. Pauly, Sch.: Overt choice.
 - Computability 9(3-4), pp. 169–191 (2020)
 - arXiv: 1902.05926v1
- T. Grubba, K. Weihrauch, Sch.: Computable metrization. Math. Log. Q., 53(4-5), pp. 381–395 (2007)
- A. Pauly: On the topological aspects of the theory of represented spaces.
 - Computability 5(2), pp. 159–180 (2016)
 - arXiv: 1204.3763v3
- Sch.: Admissibly Represented Spaces and QCB-Spaces.
 - in: Handbook of Computability and Complexity in Analysis, Springer Verlag, to appear in May 2021
 - arXiv: 2004.09450v1