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Theorems of Hyperarithmetic Analysis

We assume a passing acquaintance with the language of second order
arithmetic with two sorted structures N = (N,S ,+,×, <, 0, 1,∈) with
S ⊆ P(N) and basic systems of Reverse mathematics such as RCA0
(∆0

1-CA and Σ01-Ind), ACA0 (arithmetic comprehension) and ATR0 (iterate
arithmetic comprehension through well orderings). We deal only with
models satisfying at least RCA0
N is the standard model of arithmetic and we use (N, S) for S ⊆ P(N) to
denote the standard models of second order arithmetic.

We also assume a passing acquaintance with the basic notions of recursion
theory including Turing reducibility (A ≤T B ⇔ ∃e(ΦBe = A) and the
Turing jump (X 7→ X ′ = {e|ΦXe (e) ↓}) with its iterations X 7→ X (α)

(Xα+1 = (X (α))′ and X (λ) = ⊕{X (α)|α < λ}) for ordinals α and limit
ordinals λ recursive in X .

We begin our story with a class of principles/theories, the
Theorems/Theories of Hyperarithmetic Analysis, THAs.
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Theorems of Hyperarithmetic Analysis

The View from Proof Theory/Reverse Mathematics

Considered from the viewpoint of Reverse Mathematics, the THAs lie
above ACA0 and indeed above each fixed α-iteration of the Turing jump
for α a recursive ordinal but not above ATR0 and may be incomparable
with it.

The most commonly used THAs are probably

Σ11-AC0: For Φ arithmetical, ∀n∃XΦ(n,X )→ ∃X∀nΦ(n,X [n]).

∆1
1-CA0: Comprehension for ∆1

1 predicates.

w-Σ11-AC0: For Φ arithmetical, ∀n∃!XΦ(n,X )→ ∃X∀nΦ(n,X [n]).

Studied by many beginning with Kreisel [1962], H. Friedman [1967],
[1971], [1975], ]; Steel [1978]...; Montalbán [2006], [2008]; ...

However, there is no axiomatic/proof theoretic characterization in the
language of second order arithmetic even for ω-models.

Theorem (Van Wesep 1977). If T is a THA then there is a strictly
weaker T̂ (even with more ω-models) which is also a THA.
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Theorems of Hyperarithmetic Analysis

The View from Recursion Theory:

We can the THAs recursion theoretically:

Definition: Hyp(X ), the collection of all sets hyperarithmetic in X ,
consists of those sets recursive in some iteration X (α) of the jump of X for
α an ordinal recursive in X . These are also the sets ∆1

1 in X .

Definition: A sentence (theory) T is a theorem (theory) of
hyperarithmetic analysis (THA) if

1. For every X ⊆ N, (N,HYP(X )) � T and
2. If (N,S) � T and X ∈ S then HYP(X ) ⊆ S .

So the second clause expresses strength —every standard model of T is
closed under well ordered iterations of the Turing jump and so under
hyperarithmetic reduction. So it is like ATR0.
The first clause bounds the strength of T by saying that the sets
hyperarithmetic in X form a model of T . So ATR0 is not a THA.
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Theorems of Hyperarithmetic Analysis

Logical but no “Mathematical” theorems in THA

For many years there were no known nonlogical THAs from the
mathematical literature (i.e. not mentioning classes of first order formulas
or their syntactic complexity).

The first and, up until now the only example, was a result (INDEC) about
indecomposability of linear orderings in Jullien’s thesis [1969]. It was
shown to be a THA by Montalbán (2006) who investigated its place
among the older systems as well as several other logical ones using
variations of Steel forcing. In [2008] he included Π11-Separation and new
forcing variations. More analysis was provided by Neeman [2009, 2011].

Montalbán, in Open Questions in Reverse Mathematics [2011], asked if
there are any others.

Richard A. Shore (Cornell University) ATHA 04/2021 5 / 21



Theorems of Hyperarithmetic Analysis

New Mathematical THA: Rays in Graphs

Barnes, Goh and Shore [ta] (BGS) have now provided a whole family of
THAs which are classical results in graph theory appearing in both articles
and the standard textbook Graph Theory (Diestel) and some natural
variations.
Definition: A Graph G = (V ,E ) is a set V of vertices and a SIB (edge)
relation E on V . If E is just IB, the graph is directed. A ray R in G is a
subgraph 〈V ′,E ′〉 (i.e. V ′ ⊆ V and E ′ ⊆ E ) and an isomorphism fH ′ from
N with edges (n, n + 1) for n ∈ N to H ′. (So this gives a sequence 〈f (n)〉
of vertices with edges between f (n) and f (n + 1) for each n.A set or
sequence S is one of disjoint rays in G if every element is a ray in G and
no two such rays have an element (i.e. vertex) in common. G has
arbitrarily many disjoint rays if for every k ∈ N there is a sequence of
disjoint rays of length k.

Theorem [IRT] (Halin [1965]): If a graph has arbitrarily many disjoint
rays it has an infinite sequence 〈Rn〉 of disjoint rays.
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Theorems of Hyperarithmetic Analysis

THAs and Reductions

This sounds like a compactness result and so should be provable in ACA0.

However, BGS show that it and several analogs including IRTXY are
THAs. (IRTXY is IRT with the graph undirected or directed (X = U or
X = D) and the rays being vertex or edge disjoint (Y = V or Y = E ).

BGS investigated the reverse mathematical strength of these THAs as well
as many other variations. In particular, they provided several reductions in
RCA0 (or RCA0 with more induction) among many of these variations.
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Almost Theorems of Hyperarithmetic Analysis

Locally Finite Graphs

One especially unusual phenomena has appeared in our investigations.

We were surprised to find what seemed to be a reduction we had missed in
a much more recent paper of Bowler, Carmesian and Pott [2015]. They
point out that IRTUE follows from IRTUS .
In their reduction they sketch a proof of the following fact:

Proposition LF: If a graph G has arbitrarily many edge disjoint rays then
it contains a locally finite graph Ĝ (each vertex is in only finitely many
edges) with arbitrarily many edge disjoint rays.

The analogous statements LFXY for directed graphs and/or vertex disjoint
rays also hold.

The IRTXY versions of Halin’s theorem restricted to just locally finite
graphs turn out to each be equivalent to ACA0 (over RCA0).

Thus each version LFXY of the Proposition implies the corresponding
version of Halin’s theorem and so, at least over ACA0, must be a THA.
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Almost Theorems of Hyperarithmetic Analysis

But Not THA

The LFXY themselves, however, are not THAs. Indeed, even together,
they are highly conservative over RCA0 and so (over RCA0) they do not
imply ACA0 (or even WKL0 or DNR0). Moreover, even with the addition
of WKL0 they do not imply ACA0.

So, even standard models of these facts about locally finite graphs are not
necessarily closed under the Turing jump. However, if they are, they are
closed under hyperarithmetic reductions as well.

We also have many variations on both classical and Halin type THAs
which are almost THAs, i.e. when combined with ACA0 they are THAs
but on their own they are very weak in all the above senses and more.
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Almost Theorems of Hyperarithmetic Analysis

ATHA

Definition: A sentence (theory) T is an almost theorem (theory) of
hyperarithmetic analysis (ATHA) if T + ACA0 is a THA but T 0 ACA0
(and so is not itself a THA).

Most of our other examples of ATHAs are generated by weakening
conclusions of known THAs to allow in some way for finitely many
mistakes. In the following list Φ is arithmetical.

Σ11-AC0: ∀n∃XΦ(n,X )→ ∃X∀nΦ(n,X [n]).
Σ11-AC

∗
0: ∀n∃XΦ(n,X )→ ∃X∀n(∃Y (Y =∗ X [n] & Φ(n,Y )).

Σ11-AC
−
0 : ∀n∃XΦ(n,X )→ ∃X∀n∃mΦ(n,X [m]).

Σ11-AC
−∗
0 : ∀n∃XΦ(n,X )→ ∃X∀n∃m∃Y (Y =∗ X [m] & Φ(n,Y ).

All of these variants of Σ11-AC0 are equivalent over ACA0 but all except
Σ11-AC0 itself are weak as above. Similar variations of w-Σ

1
1-AC0, f-Σ

1
1-AC0

have the same status as do ones for the IRTXY and related principles,
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Almost Theorems of Hyperarithmetic Analysis

Conservation Classes

We also prove many new types of conservation results for various classes
of formulas for all these principles and others.
Definition: Each of our classes Γ of formulas consists of a base class
which includes the quantifier free formulas and is then closed under
conjunction (∧), disjunction (∨), first order quantification (∀x and ∃x for
number variables) and universal second order quantification (∀X for set
variables).
The G-Π11 class of formulas has only the quantifier free ones in its base.
The G-r-Π12 class of formulas also has in its base all formulas which are of
the form ∃YΘ(Y ) where Θ is Σ03.
The G-Tanaka class of formulas instead adds to the base class all formulas
of the form ∃!YΦ(Y ) for arithmetic Φ.
The G-r-Tanaka class also includes in its base all formulas of the form
∃!Y ∃ZΨ(x̄ ,Y ,Z ) with Ψ a Σ03 formula.
For a class Γ of formulas, we say a theory T is Γ-conservative if, for every
sentence ϕ ∈ Γ, T ` ϕ→ RCA0 ` ϕ.
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Almost Theorems of Hyperarithmetic Analysis

Tree Notions of Forcing

We define some quite general classes of forcings that have strong
preservation properties over RCA0 and can be iterated to prove
conservation results for the class Γ defined above.
Definition: A notion of forcing P = 〈P,≤〉 is a tree forcing (t-forcing) if
the following hold:

1 Conditions in P are of the form 〈τ ,T 〉 where T ∈ S(N) is a subtree
of N<N (i.e. a subset of N<N in N closed under initial segments with
respect to ⊆) and τ is comparable with every σ ∈ T . The root of T
is taken to be the empty string. The stem of T is defined to be the
longest string comparable with every element of T .

2 If 〈τ ′,T ′〉 ≤ 〈τ ,T 〉 then τ ′ ⊇ τ and T ′ ⊆ T .
3 For every n ∈ N the class {〈τ ,T 〉 ||τ | ≥ n} is dense in P, i.e.

(∀ 〈τ ,T 〉 ∈ P)(∃ 〈τ ′,T ′〉)(〈τ ′,T ′〉 ≤ 〈τ ,T 〉 & |τ ′| ≥ n).

Richard A. Shore (Cornell University) ATHA 04/2021 12 / 21



Almost Theorems of Hyperarithmetic Analysis

Effective Tree Notions of Forcing

Definition: A tree notion of forcing P is an effective tree forcing
(et-forcing) if, for every 〈τ ,T 〉 ∈ P, the class
Ext(〈τ ,T 〉) = {τ ′|(∃T ′)(〈τ ′,T ′〉 ≤ 〈τ ,T 〉)} is boldface Σ01 i.e. there is an
A ∈ S(N) such that Ext(〈τ ,T 〉) is Σ01(A) (over N).
Definition: An et-forcing P is uniform (a uet-forcing) if, for every
condition 〈τ ,T 〉, every ρ, σ ∈ Ext(〈τ ,T 〉) with |ρ| = |σ|, and every
〈ρ′′,R ′′〉 ≤ 〈ρ′,R ′〉 ≤ 〈τ ,T 〉 with ρ ⊆ ρ′, 〈ρ′′σ,R ′′σ〉 ≤ 〈ρ′σ,R ′σ〉 ≤ 〈τ ,T 〉.
For technical convenience we also require that if 〈τ ,T 〉 ∈ P and the stem
of T is some σ ⊃ τ then 〈ρ,T 〉 ≤ 〈τ ,T 〉 whenever σ ⊇ ρ ⊇ τ . Note: For
σ ∈ T , Tσ = {µσ|µ ∈ T} where µσ(i) = σ(i) for i < |σ| and µσ(i) = µ(i)
for i ≥ |σ|.
Ignore this last definition. Uniformity roughly guarantees that in any
condition 〈τ ,T 〉 if σ and ρ extend τ and are of the same length then the
subtrees of T above σ and ρ are the same.
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Almost Theorems of Hyperarithmetic Analysis

Preservation Properties

Common examples of uet-forcings are Cohen, Mathias and Silver forcings
and many variations. The usual versions of Laver and Sacks forcing are et
but not uniform. Sacks forcing can be made so by using “uniform” trees
as in Lerman [1983, VI.2.3]. Similar adjustments can be made to Laver
forcing. These forcings have many preservation properties:

Theorem: If P is an et-forcing over a countable model N of RCA0 with
a suitably chosen countable collection D of dense sets, then we have the
following preservation type results:

1 If G is P-generic for D, then N [G ] � RCA0.
2 If G is P-generic for D and R ∈ S(N ) is a subtree of N<N with no
branch in S(N ), then it has none in N [G ].

3 For any {Ci |i ∈ ω} with Ci ⊆ N and Ci /∈ S(N ) for every i ∈ ω, there
is a D such that, for any D-generic G , no Ci ∈ N [G ].
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Almost Theorems of Hyperarithmetic Analysis

Conservation Consequences

We prove that these notions of forcing can be used to derive conservation
results for each of our classes for theories T for which such forcings supply
the witnesses required by the axioms/principles of T and so iterations can
construct models of T .
All of our proofs have the same general format.

For the sake of a contradiction, we assume that there is a sentence Λ ∈ Γ
such that T ` Λ and a countable model N � ¬Λ of RCA0.

We then construct, by iterated forcing, a model N∞ of T .

If we can also guarantee that N∞ � ¬Λ, we have proven Γ-conservativity.

Typically, the theories T consist (in addition to RCA0) of Π12 axioms of the
form ∀X (Φ(X )→ ∃YΨ(X ,Y )) with Φ and Ψ arithmetic where we can
add a witness Y for any instance X by forcing. Here, starting with any
N � RCA0, a careful ω length iteration produces a model Nω of T .
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Almost Theorems of Hyperarithmetic Analysis

Theories

The crucial point for Π12 axioms is that the facts being witnessed are
arithmetic.

As forcing does not change the first order part of the ground model,
absoluteness applies to show that solutions remain solutions and all
instances in the final model are instances when they appear in the iteration.

The only new addition is that we move from the classical class (e.g. Π11)
to the generalized one (G-Π11) by an induction argument on formulas.

Our ATHAs and many stronger principles with the same conservation
properties are not Π12 and additional arguments are needed.
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Almost Theorems of Hyperarithmetic Analysis

Conservation and Preservation for ATHAs

For example, in the LFXY , Φ and Ψ are of the form ∀n∃ZΘ with Θ
arithmetic (saying Z is a sequence of disjoint rays of length n).
While the added solutions remain solutions in Nω, we may have new
instances that did not seem to be instances at any point along the way:
The required witnesses Z for some X may appear cofinally in the iteration.
So Nω may not be a model of LFXY .
The natural plan here is to continue the iteration to length ω1.Then any
witnesses for an X appearing in Nω1 must all appear at some countable
stage of the length ω1 iteration.

So, as we proceed carefully, we have a solution added at some point as
well.

Theorem: For each of the LFXY there are uet-forcings that add solutions
for any instance. Thus all of them together are G-r-Tanaka (and so
G-Tanaka, G-r-Π12 and G-Π

1
1) conservative over RCA0. As over ACA0

each implies IRTXY which is a THA, each of them is an ATHA.
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Stronger Theories

Conservation Results for Stronger Theories

We also consider variations of the standard array of strong choice
principles that provide ones that are Γ-conservative for all our classes but
very strong over ACA0.
Definition: Σ1n+1-AC

∗: ∀A[∀n∃XΦ(A, n,X )→ ∃Y ∀n∃σΦ(A, n,Y [n]σ )], for
Φ Π1n. (Note: Yσ(i) = σ(i) for i < |σ| and Yσ(i) = Y (i) for i ≥ |σ|.)
Σ1n+1-AC

−: ∀A[∀n∃XΦ(A, n,X )→ ∃Y ∀n∃mΦ(A, n,Y [m])] for Φ Π1n.
Σ1∞-AC

∗: ∀n(Σ1n-AC
∗) and Σ1∞-AC

−: ∀n(Σ1n-AC
−).

Theorem: ∀n ∈ ω, RCA0 ` Σ1n+1-AC0 → Σ1n+1-AC
∗ → Σ1n+1-AC

−and

ACA0 ` Σ1n+1-AC
−
0 → Σ1n+1-CA0. So over ACA0 all of Σ1n+1-AC

∗,
Σ1n+1-AC

− and Σ1n+1-CA0 are equivalent for each n as are Σ1∞-AC
∗,

Σ1∞-AC
− and Σ1∞-CA0.

Theorem: Σ1∞-AC
∗
0 and so Σ1∞-AC

−
0 and all the Σ1n+1-AC

∗ and
Σ1n+1-AC

− are Γ-conservative for all our classes Γ.

Richard A. Shore (Cornell University) ATHA 04/2021 18 / 21



Stronger Theories

ATHAs and Stronger Theories

In particular, Σ11-AC
∗
0, Σ11-AC

−
0 , Σ1∞-AC

∗
0 and Σ1∞-AC

− are highly
conservative over RCA0 but over ACA0 each of the first pair are equivalent
to Σ11-AC0 (and so are ATHAs) and each of the second pair are equivalent
to Σ1∞-AC0 and so stronger than full second order arithmetic.
Some earlier conservation results for some of the theories covered here are
in work by Yamazaki [2000], Kihara [2008] or by Tanaka, Montalbán and
Yamazaki as reported in Yamazaki [2009] and in Yokoyama [2009].
The proof of the next to last Theorem is combinatorial and proceeds by
induction on n. The last Theorem is proven by first providing uet-forcings
that add solutions for Σ1∞-AC

∗
0.

Now Σ1∞-AC
∗
0 has both hypotheses/instances Φ(X ) and

conclusions/solutions Ψ(X ,Y ) of arbitrary complexity. Thus we need
another idea to guarantee that adding what looks like a solution stays a
solution in Nω1 as well as a procedure that makes sure we handle
everything that is an instance in Nω1 along the way.
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Stronger Theories

A CLUB of Elementary Submodels

The crucial idea here is that if we do an ω1 iteration, then for a closed
unbounded set of λ < ω1, Nλ will be an elementary submodel of Nω1 .
Thus if we carefully handle everything that looks like an instance in any
Nλ and supply something that looks like a solution (over Nλ) all will be
well at the end.
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Stronger Theories

Answering Another Open Question?

We view these results on variants of choice principles and the previous
ones on ATHAs that are equivalent to known THAs over ACA0 as
supplying answers to a question raised by Hirschfeldt and repeated in
Montalbán’s Open Questions in Reverse Mathematics [2011].
He asked for examples of principles that are distinct over RCA0 (or even
RCA) but equivalent over some stronger (natural) theory.
Our results provide an ample list of many pairs of principles that are very
different over RCA0 but equivalent over ACA0. The most mathematically
natural ones are the IRTXY and the corresponding LFXY . It could well be
argued that the weak ones should really be seen as the same as their strong
counterparts in an analysis that works over ACA0 rather than RCA0.
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