# On definability of c.e. degrees in the 2-c.e. degree structures

Yamaleev M.M.

Kazan Federal University

Oberwolfach, April 27, 2021

#### Definitions and notations

All sets are subsets of  $\omega = \{0, 1, 2...\}$ . Thus, let  $A, B \subset \omega$ .

- $A \leq_T B$  if there is an algorithm that allows to answer the questions " $x \in A$ ?", using B as an oracle.
- $A \leq_m B$  if there is a computable function f such that  $x \in A \iff f(x) \in B$ .

• Clearly, 
$$A \leq_m B \implies A \leq_T B$$
.

## Definitions and notations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• If  $A \leq_r B$  and  $B \leq_r A$  then  $A \equiv_r B$ .

• Let 
$$\deg_r(A) = \{B \mid A \equiv_r B\}.$$

• Here, 
$$r \in \{m,T\}$$
.

## The Coopers theorem

## Theorem (Cooper, 1971)

There is a 2-c.e. set with proper 2-c.e. Turing degree.

**Remark**. A 2-c.e. degree is proper if it doesn't contain a c.e. set. In particular, the constructed set has proper 2-c.e. *m*-degree.

As a corollary, the universes for c.e. and 2-c.e. degree structures are different. And clearly, c.e. degrees form a substructure in the corresponding 2-c.e. degrees.

# Motivations and goals

- To investigate the 2-c.e. degree structures.
- To investigate model-theoretic properties of c.e. and 2-c.e. degrees (in different settings).
- To study relationship between c.e. and properly 2-c.e. degrees (in different settings).

## Motivations and goals

Open question (Cooper, 2002; Arslanov, 2009)

Is the class of c.e. Turing degrees definable in the partial ordering of 2-c.e. Turing degrees?

Related questions:

- The same questions for *m*-degrees.
- A weaker version of the question involving parameters.
- A weaker version of the question involving additional predicates.
- The case of low c.e. and 2-c.e. degrees.

# Definability

Let  $\mathcal A$  be a structure, and B be a subset of |A|.

#### Definition

The class B is definable in  $\mathcal{A}$  if there exists a formula  $\varphi(x)$  of the first order language such that for all  $a \in |A|$  it holds

 $\mathcal{A}\models\varphi(a)\Leftrightarrow a\in B$ 

- As A we consider (D, ≤), where D is the corresponding 2-c.e. degrees, and ≤ is induced by the same reducibility.
- As B we consider  ${f R}$ , the c.e. degrees.
- In  $\varphi$ , there can be additional fixed variables  $c_1, c_2, \dots \in |A|$  called parameters.

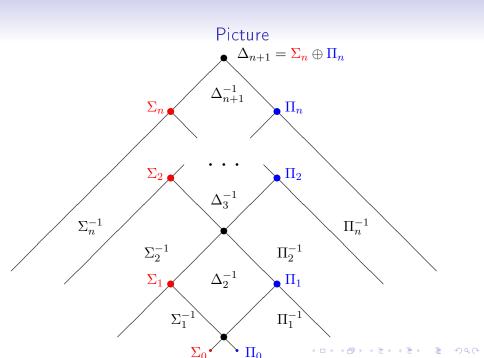
## Section 1

Definability for m-degrees



# A brief history

- *m*-degrees were actively studied since 1970 (by Degtev, Denisov, Ershov, Nies, Lachlan, Selivanov, etc. )
- The most attention was received by c.e. *m*-degrees and by all *m*-degrees.
- In general the structures of *m*-degrees found out to have many good properties, in particular, much better then the structures of *T*-degrees.
- For example,  $\Sigma_n^{-1}$  *m*-degrees have the greatest (universal) element (by Ershov),  $\Delta_n^{-1}$  *m*-degrees have the greatest element (by Selivanov), for any fixed n > 0.



- c.e. *m*-degrees form an ideal in 2-c.e. *m*-degrees
- c.e. and co-c.e. *m*-degrees are isomorphic.
- c.e. and 2-c.e. m-degrees form a distributive upper semilattice (by Ershov, Lachlan, Selivanov). The same holds for c.e. wtt-degrees, but doesn't hold for 2-c.e. wtt-degrees, and for c.e. and 2-c.e. Turing degrees.
- The greatest c.e. m-degree is not splittable (by Lachlan), thus Δ- and Σ-(Π-) levels are not elementarily equivalent. The result has a direct generalization to 2-c.e. m-degrees.

- Given 2-c.e. set  $A = A_0 A_1$ , let  $A_0 = rng(f)$  for some computable 1-1 f, then  $L(A) = f^{-1}(A_1)$  is Lachlan's set for A.
- L(A) is c.e.
- $\overline{L(A)} \leq_m A$
- If L(A) is c.e. then A is 2-c.e., and if L(A) is computable then A is c.e.

• Then below any proper 2-c.e. *m*-degree there exists a noncomputable co-c.e. *m*-degree.

- Given 2-c.e. set A = A<sub>0</sub> A<sub>1</sub>, let A<sub>0</sub> = rng(f) for some computable 1-1 f, then L(A) = f<sup>-1</sup>(A<sub>1</sub>) is Lachlan's set for A.
- L(A) is c.e.
- $\overline{L(A)} \leq_m A$
- If L(A) is c.e. then A is 2-c.e., and if L(A) is computable then A is c.e.

• Then below any proper 2-c.e. *m*-degree there exists a noncomputable co-c.e. *m*-degree.

- Given 2-c.e. set A = A<sub>0</sub> A<sub>1</sub>, let A<sub>0</sub> = rng(f) for some computable 1-1 f, then L(A) = f<sup>-1</sup>(A<sub>1</sub>) is Lachlan's set for A.
- L(A) is c.e.
- $\overline{L(A)} \leq_m A$
- If L(A) is c.e. then A is 2-c.e., and if L(A) is computable then A is c.e.

• Then below any proper 2-c.e. *m*-degree there exists a noncomputable co-c.e. *m*-degree.

## Elementary difference

#### Theorem (Ershov and Lavrov, 1973)

Given noncomplete c.e. set B there exists a c.e. set  $A \not\leq_m B$  which is minimal

#### Corollary

c.e. and 2-c.e. m-degrees are not elementarily equivalent

Note that for we can take  $U_{\Delta_2}$  as B, then any set  $A \not\leq_m B$  would be proper 2-c.e. and have a noncomputable element below it.

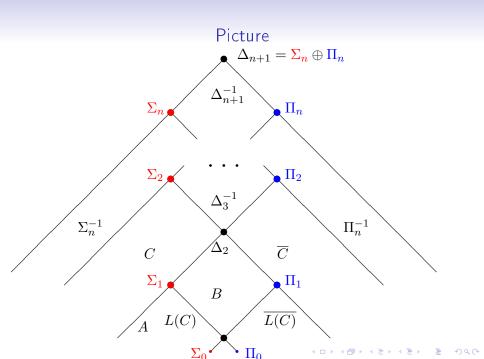
*Remark.* The theorem was proved for much more general case and for the c.e. setting. For details see [Erhov Yu.L., Lavrov I.A. Upper semilattice L(S), Algebra i Logica, 1973, Vol.12, No.2, P.167-189]

## The main structural theorems

#### Theorem 1 (Ng, Yamaleev)

Given k, n > 0, given any  $\Sigma_k^{-1}$  set B such that  $U_{\Sigma_n} \not\leq_m B$ , there exists a  $\Sigma_n^{-1}$  set  $A \not\leq_m B$  such that for any  $W <_m A$  it holds that  $W \leq_m U_{\Delta_n}$ .

- noncomplete  $B \nleftrightarrow U_{\Sigma_n} \not\leq_m B$
- minimal  $A \leftrightarrow A$  is minimal cover for  $U_{\Delta_n}$
- c.e.  $A \not\leq_m B \iff \Sigma_n^{-1}$  set  $A \not\leq_m B$



## The main structural theorems

#### Corollary (Ng, Yamaleev)

Given k, n > 0, given any  $\Sigma_k^{-1}$  set B such that  $U_{\Delta_{n+1}} \not\leq_m B$ , there exists a  $\Delta_{n+1}^{-1}$  set  $A \not\leq_m B$  such that for any  $W <_m A$  it holds that  $W \leq_m U_{\Delta_n}$ .

#### Theorem 2 (Ng, Yamaleev)

Given n > 0, there exists a set A of properly  $\sum_{n=1}^{-1}$  degree such that for any  $W \in \sum_{n=1}^{-1}$  if  $W \leq_m A$  then  $W \leq_m U_{\Delta_n}$ .

## The main structural theorems, 2-c.e. setting

#### Corollary (Ershov, Lavrov, 1973)

Given noncomplete (in  $\Delta_2^{-1}$  *m*-degrees) set *B* there exists a 2-c.e. set  $A \not\leq_m B$  such that *A* has a minimal *m*-degree (moreover, it will be either c.e. or co-c.e.)

### Corollary (from Theorem 2 (Ng, Yamaleev))

There exists a set A of properly 2-c.e. m-degree such that for any c.e. W if  $W \leq_m A$  then W is computable (i.e., A form minimal pair with the greatest c.e. degree).

## Intuitive description

- The first part says we can build minimal *m*-degrees avoiding arbitrary (noncomplete) lower cones.
- The second part says that for all c.e. *m*-degrees we can find a half minimal pair in the 2-c.e. *m*-degrees.
- Note also that we cannot do it for co-c.e. *m*-degrees using a unique 2-c.e. degree.

## Intuitive description

- The first part says we can build minimal *m*-degrees avoiding arbitrary (noncomplete) lower cones.
- The second part says that for all c.e. *m*-degrees we can find a half minimal pair in the 2-c.e. *m*-degrees.
- Note also that we cannot do it for co-c.e. *m*-degrees using a unique 2-c.e. degree.

## The corollaries

- The degree structures of c.e. and 2-c.e. *m*-degrees are not elementarily equivalent (and it works for all higher levels).
- The *m*-degree of universal  $\Delta_2^{-1}$ -set is definable in 2-c.e. *m*-degrees.
- The complementary Theorem 2 allows to distinguish the greatest c.e. from the greatest co-c.e. *m*-degree.

## The corollaries

- The degree structures of c.e. and 2-c.e. *m*-degrees are not elementarily equivalent (and it works for all higher levels).
- The *m*-degree of universal  $\Delta_2^{-1}$ -set is definable in 2-c.e. *m*-degrees.
- The complementary Theorem 2 allows to distinguish the greatest c.e. from the greatest co-c.e. *m*-degree.

## The corollaries

- The degree structures of c.e. and 2-c.e. *m*-degrees are not elementarily equivalent (and it works for all higher levels).
- The *m*-degree of universal  $\Delta_2^{-1}$ -set is definable in 2-c.e. *m*-degrees.
- The complementary Theorem 2 allows to distinguish the greatest c.e. from the greatest co-c.e. *m*-degree.

#### Definability of c.e. in 2-c.e.

- $\theta(x) := \forall b \ [x \leq b \Rightarrow \exists a \ (a \leq b \land \forall w \ [w < a \Rightarrow w \leq 0])]$
- $\psi(x) := \theta(x) \land \forall z [x < z \Rightarrow \neg \theta(z)],$
- Thus,  $\psi(x)$  is true in  $\Sigma_2^{-1}$  iff  $x = U_{\Delta_2}$
- $\varphi(x, y) := \exists u \ \psi(u) \land x \cup y = u \land [\forall x_1 \ \forall y_1(x_1 < x \Rightarrow x_1 \cup y < u) \land (y_1 < y \Rightarrow x \cup y_1 < u)]$
- Thus,  $\varphi(x,y)$  defines the pair of  $U_{\Sigma_1}$  and  $U_{\Pi_1}$  but cannot distinguish them.

• 
$$\varphi^{\Sigma}(x) := \exists y \ (\varphi(x, y) \land \exists z \ \forall w[z \not\leq x \cup y \land w < z \land w \leq x \Rightarrow w \leq 0])$$

## Complexity of the formulas

- Elementarily difference of c.e. and 2-c.e.:  $\Sigma_2^0$
- Definability of c.e. in 2-c.e.:  $\Sigma_4^0$
- For higher levels the complexity grows incredibly. For instance, in  $\Sigma_n^{-1}$  we define in the following ordering:  $U_{\Delta_2}$ ,  $U_{\Delta_3}$ , ...,  $U_{\Delta_n}$ , then  $U_{\Sigma_{n-1}}$ ,  $U_{\Sigma_{n-2}}$ , ...,  $U_{\Sigma_1}$ .

## Questions

- Is  $\Sigma_1^{-1}$  level definable in the structure of  $\Sigma_{\omega}^{-1}$ -level?
- Could the same approach work for infinite levels? (probably with parameters)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• What to do with the limit levels?

## Section 2

#### A weaker definability for Turing degrees

## Approaches

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

to the problem of definability of c.e. Turing degrees in partial ordering of 2-c.e. Turing degrees.

Proposed by Arslanov and Yamaleev (2018)

- 1. Density of double bubbles
- 2. Nonspilliting pairs
- 3. Lachlan sets and degrees
- 4. Isolation from side

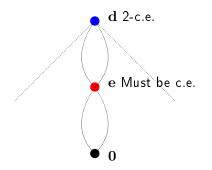
# Definable singletons

#### Definition (Arslanov, Kalimullin, and Lempp, 2010)

Let e, d be 2-c.e. degrees such that 0 < e < d. We say that these degrees form a *double bubble* (also, *a bubble pair*, *2-bubble*, *bubble*) in 2-c.e. degrees if any 2-c.e. degree u < d is comparable with e. Also, we say that d is the top of bubble, and e is the middle of bubble. By default, we consider bubbles in 2-c.e. degrees.

- The degree e must be c.e.
- The degree **d** is an exact 2-c.e. degree.
- The degree  $\mathbf{d}$  is not splittable avoiding upper cone of  $\mathbf{e}$ .

## Approach 1. The picture.



## Approach 1. The idea.

- To show that between any two c.e. degrees we can find a degree e .
- Then any c.e. degree has a splitting where the both parts are middles of bubbles.

• Such splitting doesn't exists for properly 2-c.e. degrees.

## Approach 1. The results.

- [Liu, Wu, Yamaleev, 2015]The exact 2-c.e. degrees are downward dense.
- [Andrews, Kuyper, Lempp, Soskova, Yamaleev, 2017] There exists a nonzero c.e. degree such that no double bubble can be found below it.
- Conjecture [Arslanov, Yamaleev, 2018] The middles of double bubbles can be found below any nonzero c.e. degree, moreover it can be combined with lower cone avoidance.

## Approach 1. Conclusion.

- Definable middle of bubbles with fairly "easy" construction.
- Even if we cannot prove the density. The middles of bubbles is still a reliable class of c.e. degrees. And can be combined with downward density and cone avoidance.

• Can a middle of bubble be constructed above any low or superlow c.e. degree?

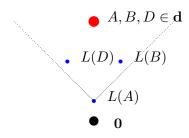
## Approach 3. Idea.

- To use L(D) which reflects to enumerability properties of a 2-c.e. set D. Then consider a collection of L(B) such that  $B \equiv_T D$ .
- Make a connection between the associated degrees L(B) and the degree of D.
- The good case is when for each properly 2-c.e. degree of B the collection of the degrees of L(B) is bounded from below by some nonzero c.e. degree.

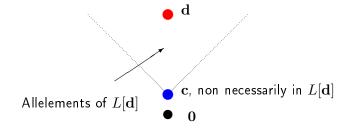
## Approach 3. Results.

- Series results by Ishmukhametov [1999,2000] and by Fang, Liu, Wu, Yamaleev [2013-2019] showed that different distributions for L(B) are possible.
- In particular, there is a properly 2-c.e. degree with unbounded collection of its associated degrees of L(B).
- Also: if D ≡<sub>T</sub> B and have a proper 2-c.e. degree then L(D) and L(B) cannot form a minimal pair.

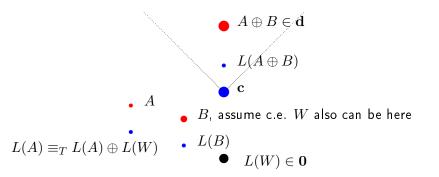
### Approach 3. Picture.



# Lower bounds for $L[\mathbf{d}]$ ?



### Approach 3. Motivation



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- We say that  $L[\mathbf{d}] = \{ \deg(L(D)) | D \in \mathbf{d} \}$  is a spector of Lachlan degrees for  $\mathbf{d}$ .
- Let  $R[\mathbf{d}] = \{W | W \text{c.e. and } \mathbf{d} \text{ is } CEA(W)\}.$
- Then, clearly,  $L[\mathbf{d}] \subset R[\mathbf{d}]$ .
- The following theorem allows to obtain  $R[\mathbf{d}] \subset L[\mathbf{d}]$ .

#### Theorem (Arslanov, LaForte, Slaman, 1998)

Given  $\omega$ -c.e. degree  $\mathbf{d}$ , which is  $CEA(\mathbf{c})$  for some c.e. degree  $\mathbf{c}$ . Then there exists a 2-c.e. set  $D \in \mathbf{d}$  such that D is  $CEA(\mathbf{c})$ . Moreover, the degree  $\mathbf{c}$  contains L(D).

- [Ishmukhametov, 1999]. There exists a noncomputable 2-c.e. degree d such that L[d] = [c, b] for some noncomputable c.e. degrees c and b. In particular, it can be c = b.
- [Arslanov, Kalimullin, Lempp, 2010]. There exists 2-c.e. degrees c < d such that they form bubble. In particular, it also holds L[d] = {c}.</li>
- For such bubble pairs the degree  ${f c}$  is definable.
- [Ishmukhametov, 1999]. Question. Does L[d] alsways contain a least element for any d?
- [Ishmukhametov, 2000]. There eixsts a 2-c.e. degree d such that L[d] doesn't have a least element.

• Question. Given  $L[\mathbf{d}] = {\mathbf{c}}$ , is  $\mathbf{c}$  definable?

- [Ishmukhametov, 1999]. There exists a noncomputable 2-c.e. degree d such that L[d] = [c, b] for some noncomputable c.e. degrees c and b. In particular, it can be c = b.
- [Arslanov, Kalimullin, Lempp, 2010]. There exists 2-c.e. degrees c < d such that they form bubble. In particular, it also holds L[d] = {c}.</li>
- For such bubble pairs the degree c is definable.
- [Ishmukhametov, 1999]. Question. Does  $L[\mathbf{d}]$  alsways contain a least element for any  $\mathbf{d}$ ?
- [Ishmukhametov, 2000]. There eixsts a 2-c.e. degree d such that L[d] doesn't have a least element.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Question. Given  $L[\mathbf{d}] = {\mathbf{c}}$ , is  $\mathbf{c}$  definable?

- [Ishmukhametov, 1999]. There exists a noncomputable 2-c.e. degree d such that L[d] = [c, b] for some noncomputable c.e. degrees c and b. In particular, it can be c = b.
- [Arslanov, Kalimullin, Lempp, 2010]. There exists 2-c.e. degrees c < d such that they form bubble. In particular, it also holds L[d] = {c}.</li>
- For such bubble pairs the degree c is definable.
- [Ishmukhametov, 1999]. Question. Does  $L[\mathbf{d}]$  alsways contain a least element for any  $\mathbf{d}$ ?
- [Ishmukhametov, 2000]. There eixsts a 2-c.e. degree d such that L[d] doesn't have a least element.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Question. Given  $L[\mathbf{d}] = {\mathbf{c}}$ , is  $\mathbf{c}$  definable?

# Spectra of Lachlan degrees

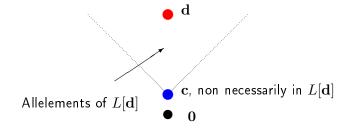
- [Fang, Wu, Yamaleev, 2013]. There exists 2-c.e. degree d such that  $L[\mathbf{d}]$  doesn't have a minimal element.
- [Arslanov, 2000; Fang, Liu, Wu, Yamaleev, 2015]. If d is a properly 2-c.e. degree then L[d] doesn't contain a minimal pair.
- Corollary. For any properly 2-c.e. degrees d a minimal element in L[d] is the least element.
- [Fang, Liu, Wu, Yamaleev]. There exists 2-c.e. degree d such that L[d] is not bounded from below by some nonmcomputable c.e. degree.
- [Yamaleev]. For any proper 2-c.e. degree d its spector L[d] differs from (0, d) ∩ R.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

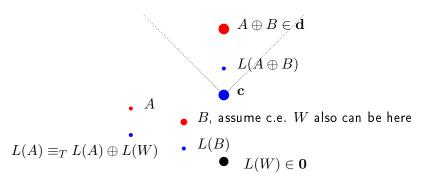
# Spectra of Lachlan degrees

- [Fang, Wu, Yamaleev, 2013]. There exists 2-c.e. degree d such that L[d] doesn't have a minimal element.
- [Arslanov, 2000; Fang, Liu, Wu, Yamaleev, 2015]. If d is a properly 2-c.e. degree then L[d] doesn't contain a minimal pair.
- Corollary. For any properly 2-c.e. degrees d a minimal element in L[d] is the least element.
- [Fang, Liu, Wu, Yamaleev]. There exists 2-c.e. degree d such that L[d] is not bounded from below by some nonmcomputable c.e. degree.
- [Yamaleev]. For any proper 2-c.e. degree d its spector L[d] differs from (0, d) ∩ R.

# Lower bounds for $L[\mathbf{d}]$ ?



### Motivation



▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

# Definability of c.e. degrees in the structures with CEA

Consider 2-c.e. Turing degrees  $\mathbf{D}(\leq, CEA)$ .

- [Cai, Shore, 2013]. C.e. degrees definable in  $\mathbf{D}(\leq, CEA)$  with  $\Sigma_2^0$  formula, but not with  $\Sigma_1^0$ -formula.
- [Yamaleev]. For any properly 2-c.e. degree d its spector L[d] differs from the interval  $(0, d) \cap \mathbf{R}$ .

• Corollary. C.e. degrees are definable  $\mathbf{D}(\leq, CEA)$  with a  $\Pi^0_1$ -formula.

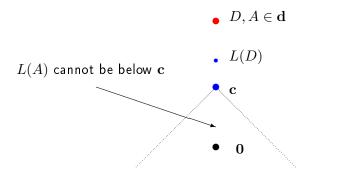
# Definability of c.e. degrees in the structures with CEA

Consider 2-c.e. Turing degrees  $D(\leq, CEA)$ .

- [Cai, Shore, 2013]. C.e. degrees definable in  $\mathbf{D}(\leq, CEA)$  with  $\Sigma_2^0$  formula, but not with  $\Sigma_1^0$ -formula.
- [Yamaleev]. For any properly 2-c.e. degree d its spector L[d] differs from the interval  $(0, d) \cap \mathbf{R}$ .

• Corollary. C.e. degrees are definable  $\mathbf{D}(\leq, CEA)$  with a  $\Pi^0_1\text{-}\mathsf{formula}$  .

# Definability with $\Pi^0_1$ formula



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

### Approach 4. Isolation from side.

- [Yang and Yu, 2006] Inapparently used isolation from side to show that c.e. degrees doesn't form a  $\Sigma_1$ -substructure of 2-c.e. degrees.
- [Cai, Slaman, and Shore, 2012] Inapparently used isolation from side to show that k-c.e. degrees doesn't form a  $\Sigma_1$ -substructure of n-c.e. degrees for all k < n
- [Wu and Yamaleev, 2012] A 2-c.e. degree d is isolated from side nontrivially if d is nonisolated and there exists a c.e. degree  $\mathbf{a}|\mathbf{d}$  such that for all c.e. degrees  $\mathbf{w}$  if  $\mathbf{w} \leq \mathbf{d}$  then  $\mathbf{w} \leq \mathbf{a}$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

### Approach 4. The result.

Any low properly 2-c.e. Turing degree d is isolated from side

#### Theorem (Yamaleev, 2019)

For any low 2-c.e. set D with a properly 2-c.e. Turing degree there exists a c.e. set A such that  $D \not\leq_T A$  and for any c.e. set  $W \leq_T D$  it holds  $W \leq_T A$ .

- The set A can be made low
- If  $D \leq_T C$  then the set A can be made below C.

# Approach 4. The consequences.

• Recall from Approach 1,

Conjecture [Arslanov, Yamaleev, 2018] The middles of double bubbles can be found below any nonzero c.e. degree, moreover it can be combined with lower cone avoidance.

• In particular, for isolation from side we bound all middles of double bubbles.

### Corollary

The low c.e. degrees are definable in the partial ordering of low 2-c.e. Turing degrees

- For any low c.e. degree we can construct a definable c.e. degree below it, avoiding any lower cone
- Due to isolation from side we cannot do it for any properly low 2-c.e. degrees.

### Approach 4. The definability (with parameters).

- [Welch, 1980] There exists low c.e. degrees  $\mathbf{c}_1$  and  $\mathbf{c}_2$  such that for any c.e. degree  $\mathbf{a}$  there exists its splitting  $\mathbf{a}_1 \cup \mathbf{a}_2 = \mathbf{a}$  such that  $\mathbf{a}_i \leq \mathbf{c}_i$  for i = 1, 2.
- The parameters  $\mathbf{c}_1$  and  $\mathbf{c}_2$  are the desired ones. Lets fix them.
- Consider a c.e. degree **a**. It has the mentioned above splitting such that the both parts are below the parameters, also those parts are not isolated from side (i.e. we always can find a definable c.e. degree below them).
- Consider a properly 2-c.e. degree d. If it doesn't have a splitting below the parameters then it is clearly proper 2-c.e. Assume it has such splitting. Then at least one part must be properly 2-c.e. Then at least one part must be isolated from side (recall that c<sub>1</sub> and c<sub>2</sub> are low).

### Approach 4. Misc.

- Assume that for a given c.e. degrees a ≤ c there is a middle of bubble e < a such that e ≤ c. How to avoid the case when c could be 2-c.e.?
- Then we should update isolation from side as follows: given 2-c.e. degree d and c.e. degree a such that a ≤ d. Then there is a c.e. degree c such that it covers the c.e. degrees below d (can include d as well) and a ≤ c.

### Approach 4. Backup plans.

- For a given properly 2-c.e. degree d do there exists c.e. degrees c and g such that one of them isolates d from side?
- For a given properly 2-c.e. degree d do there exists c.e. degrees c and g such that any c.e. degree below d is either below c or g?
- Note that then we obtain definable degrees which are join of two middles of bubbles? Does this class coincide wth the middles of bubbles?

# Turing degrees. Conclusion

- Definability with 2 parameters.
- Definability in smaller structures (low 2-c.e. degrees).
- Definability with additional predicate CEA (at least possible level).

・ロト・日本・モト・モート ヨー うへで

# Open questions

- Is any properly 2-c.e. degree isolated from side?
- Is any properly 2-c.e. degree pseudoisolated (by G. Wu, 2005)?
- Can c.e. degree be definable with 1 parameter in the partial ordering of 2-c.e. degrees?

### Section 3

#### The Ershov hierarchy and the CEA hierarchy

### Questions

- Given a 2-c.e. degrees. In which c.e. it can be CEA?
- Given a c.e. degree. Which 2-c.e. degrees are CEA in it?

Open question (Soare, 1994; Arlsanov, Lempp, Shore, 1996; Cooper, Li, 1998; LaForte, 2001; Arslanov, 2011)

Given low noncomputable c.e. degree c, do there exists a properly 2-c.e. degree such that d is CEA(c)?

(Due to the paper of Soare and Stob, 1982)

# The CEA hierarchy

- A set D is CEA(C) if  $C \leq_T D$  and D is  $\Sigma_1^C$  (CEA = REA)
- A degree d is CEA(c) if for some D ∈ d and C ∈ c we have that D is CEA(C)
- A set A is n-CEA if A is CEA(C) for some (n-1)-CEA set C

- A degree **d** is properly n-CEA if it is n-CEA, but not (n-1)-CEA
- C.e. degrees are just 1-CEA degrees.
- The same doesn't hold for 2-c.e. degrees.

# The CEA hierarchy

#### Theorem (Soare, Stob, 1982)

Given noncomputable c.e. degree c, there exists a non-c.e. degree d which is CEA(c).

#### Theorem (Cholak, Hinman, 1994)

Given noncomputable c.e. degree c, for all  $n \ge 1$  there exists a non-*n*-*CEA* degree d which is CEA(c).

**Remark.** In the first theorem n = 1, thus d is 2-CEA.

# Enumerability relative to low c.e.degrees

#### In $\Delta^0_2$ -degrees:

#### Theorem (Soare, Stob, 1982)

Given noncomputable low c.e. degree c, there exists a non-c.e. degree d which is CEA(c)

#### Theorem (Arslanov, Lempp, Shore, 1996)

There exists noncomplete c.e. degree c such that any  $\Delta_2^0$ -degree, which is CEA(c), must be c.e.

#### Theorem (Arslanov, LaForte, Slaman, 1998)

Given  $\omega$ -c.e. degree **d**, which is  $CEA(\mathbf{c})$  for some c.e. degree **c**. Then there exists a 2-c.e. set  $D \in \mathbf{d}$  such that D is  $CEA(\mathbf{c})$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Open question (Soare, 1994; Arlsanov, Lempp, Shore, 1996; Cooper, Li, 1998; LaForte, 2001; Arslanov, 2011) Given low noncomputable c.e. degree c, do there exists a properly 2-c.e. degree such that d is CEA(c)?

# The negative answer

#### Theorem (Arslanov, Batyrshin, Yamaleev)

There exists noncomputable low c.e. degree c such that any 2-c.e. degree, which is CEA(c), must be c.e.

#### Corollary(Arslanov, Batyrshin, Yamaleev)

There exists noncomputable low c.e. degree c such that any  $\omega$ -c.e. degree, which is  $CEA(\mathbf{c})$ , must be c.e.

# Corollaries

#### Corollary (Arslanov, Batyrshin, Yamaleev)

There exists low c.e. degrees, which cannot be Lachlan degrees for properly 2-c.e. degrees.

#### Corollary (Arslanov, Batyrshin, Yamaleev)

There exists low c.e. degrees  $\mathbf{b} \leq \mathbf{c}$  such that any  $\Delta_2^0$ -degree, which is  $CEA(\mathbf{b})$  and  $> \mathbf{c}$ , must be c.e.

Recall that if c is superlow then non-c.e. CEA(c) degrees must be 2-c.e.

# Generalization and question

#### Theorem (Arslanov, Batyrshin, Yamaleev)

Let  $\mathcal{U}$  be a class of  $\Delta_2^0$ -sets uniformly computable in  $\emptyset 0'$ . Do there exists a low c.e. degree such that any set from  $\mathcal{U}$ , which has  $CEA(\mathbf{c})$  degree, must have c.e. degree?

In particular, as  ${\mathcal U}$  we can take different levels of the Erhsov hierarchy.

#### Question (Arslanov, Batyrshin, Yamaleev)

Does the construction guarantee that the degree  $CEA(\mathbf{c})$  belongs the least possible level of the Ershov hierarchy?

#### Question (Arslanov, Batyrshin, Yamaleev)

Given low, but non-superlow, c.e. degree c. Do there exists CEA(c) degree which is not of 2-c.e. degree?

### Comments

- What if we try to take all  $\Delta_2^0$ -sets instead of  $\mathcal{U}$ ?
- Then we have to deal with  $\Sigma^0_2\text{-sets}$  as well and they ruins the lowness strategies.
- Considering incompleteness strategy we add a freedom (in particular, we can make additional copies of strategies in manner of 0<sup>'''</sup>-argument).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Acknowledgements

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

N.A. Bazhenov, Yu.L. Ershov, M.Kh. Faizrakhmanov, A.G. Melnikov, S.S. Ospichev, V.L. Selivanov, G. Wu, and co-authors. Thank you for your attention!