
Computability in Europe 2021: Connecting with Computability

Generalized Computable Numberings and Degree
Spectra of Hereditarily Countable Families

M. Faizrahmanov

Kazan (Volga Region) Federal University
Volga Region Scientific-Educational Centre of Mathematics

Computability in Europe, 5–9 July 2021



Basic Definitions

Numbering of a countable set ( is a surjective mapping
� : ℕ→ (.

Let �(() be the set of all numberings of (. Let �0 , �1 ∈ �(().

Definition
We say that �0 is reducible to �1 (�0 6 �1) if �0 = �1 ◦ 5 for
some computable function 5 . Numberings �0 and �1 are
called equivalent (�0 ≡ �1) if �0 6 �1 and �1 6 �0.

Definition
A numbering � of a countable family S⊆ 2ℕ is computable, if
the set �� = {〈G, H〉 : H ∈ �(G)} is c.e. (or, equivalently, there is
a computable function ℎ such that �(G) =,ℎ(G)). In this case,
the family S is said to be also computable.
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Approach of Goncharov-Sorbi (1997)

Let Cbe a family of constructive objects described by elements
of some language L. Suppose that the language L is equipped
with Gödel numbering �. Let � be an interpretation of the
expressions from L, i.e. let � : L→ Cbe any surjective
mapping.

Examples
1. Let Cbe the family of all Σ0

1-subclasses of the Cantor
space 2ℕ, L the class of all c.e. subsets of 2<ℕ. Then we can
define �(() = ⋃

�∈({/ : � ≺ /}.

2. Let Cbe the set of all left-c.e. reals, L the set of all pairs
〈,, @〉, where, ⊆ ℚ is a c.e. set and (−∞, @) ∩, ≠ ∅. Then
we can define �(,, @) = sup{A ∈, : A < @}.
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Approach of Goncharov-Sorbi (1997)

Let Cbe some class of objects, L a language describing the
elements of C, � a Gödel numbering of L, � an interpretation of
L in C.

A numbering � : ℕ→ S⊆ C is called computable numbering
(relative to the interpretation �) if there exists a computable
function f s.t. �(=) = �(� 5 (=)) for each = ∈ ℕ.

Let ComL
� (S) be the class of all such numberings.

The quotient structure RL
�
(S) = 〈ComL

� (S)/≡;6〉 is the Rogers
semilattice of the family S. Join in RL

�
(S) is induced by the

direct sum of numberings: (�0 ⊕ �1)(2G + 8) = �8(G), 8 = 0, 1.
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Computable Numberings in the Arithmetical Hierarchy

Let Cbe the class Σ0
=+1, Lbe the set of all Σ=+1-formulas of

arithmetics of a free variable G.

Let �(�<) = {0 : Ω |= �<[0]}, where Ω is the standard model of
arithmetic.

Then a numbering � of a family S⊆ C is called
Σ0
=+1-computable if there exists a computable function 5 s.t.

�(<) = {0 : Ω |= � 5 (<)[0]} for each < ∈ ℕ.

Let Com0
=+1(S) = ComL

� (S) and R0
=+1(S) = RL

�
(S).

Theorem (Goncharov, Sorbi, 1997)
A numbering � of a family Sof Σ0

=+1-sets is Σ
0
=+1-computable

iff �� = {〈G, H〉 : H ∈ �(G)} ∈ Σ0
=+1.
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Complutable Numberings of the Hereditarily Countable Families

The hereditarily countable families of rank 1 (1-families) are the
countable subsets of 2ℕ.

The hereditarily countable families of rank (= + 1)
((= + 1)-families) are the countable sets of =-families. The
2-families are also called the classes of families.

Let Cbe the class of all computable families, Lbe the class of
all computable numberings. Let �(�<) = �<(ℕ).

Then a numbering � of a 2-family S ⊆ C is called computable if
there exists a computable function 5 s.t. �(<) = � 5 (<)(ℕ) (or,
equialently, there is a computable function ℎ s.t.
�(<) = {,ℎ(<,G) : G ∈ ℕ}). In this case, the 2-family S is also
called computable.
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Complutable Numberings of the Hereditarily Countable Families

Let Cbe the class of all computable =-families, Lbe the class of
all their computable numberings. Let �(�<) = �<(ℕ).

Then a numbering � of an (= + 1)-family S ⊆ C is called
computable if there exists a computable function 5 s.t.
�(<) = � 5 (<)(ℕ).

Let Comℎ
=+1(S) = ComL

� (S) and Rℎ
=+1(S) = RL

�
(S).

If S is a computable family, then R0
1(S) � Rℎ

2 (F(S)), where
F(S) = {{ 5 ∈ ℕℕ : 5 = G, G ∈ �} : � ∈ S}.
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Complutable Numberings of the Hereditarily Countable Families

For a set � ⊆ ℕ, let
F0(�) = { 5 ∈ ℕℕ : ∃G ∈ �∀H [ 5 (H) = G + 1]} ∪ { 5 ∈ ℕℕ : 5 =∗ 0},
F=+1(�) = {F=( 5 ) : 5 ∈ F0(�)}.

For a family B, let S=(B) = {F=(�) : � ∈ B}.

Theorem
Let Bbe a Σ0

=+2-computable family. Then
R0
=+2(B) � Rℎ

=+2(S=(B)). In particular, for = = 0 we have that
R0

2(B) is isomorphic to the Rogers semilattice 'ℎ2 (S0(B)) of
the class of computable functions S0(B).

For a class of families of computable functions ℌ, let
�(ℌ) = {F2 : F∈ ℌ}, where F2 is the closure of F in the Baire
space ℕℕ.
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Complutable Classes of Families of Total Functions

Let Aand Bbe finite families of Σ0
=+1-sets s.t. 〈A;⊆〉 � 〈B;⊆〉.

Then R0
=+1(A) � R0

=+1(B) (see Ershov’s monograph, 1977).

Let F andG be finite classes of families of computable functions
with |F| = |�(F)| and |�(G)| = 1. Let Abe a finite family of c.e.
sets s.t. 〈A;⊆〉 � 〈�(F);⊆〉. Then R0

1(A) � Rℎ
2 (F). In particular,

the case is possible when |F| > 1 but |Rℎ
2 (F)| = 1.

If S is a finite family of Σ0
2-sets s.t. 〈S;⊆〉 � 〈G;⊆〉, then

R0
2(S) � Rℎ

2 (G).

Theorem (Goncharov, Sorbi, 1997)
Let Sbe a Σ0

=+2-computable family with |S| > 1. Then R0
2(S) is

infinite. In particular, the case is possible when
〈F;⊆〉 � 〈G;⊆〉 but Rℎ

2 (F) � Rℎ
2 (G).
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Complutable Classes of Families of Total Functions

Let F0 , . . . ,F= be finite classes of families of computable
functions s.t. (∀8 , 9 6 =)(∀G∈ F8)(∀H ∈ F9) [G2 = H2 ⇔ 8 = 9].

Let R = {'< : < 6 =} be a family of c.e. sets such that
'8 ⊆ ' 9 ⇔ G2

8
⊆ G2

9
, where G8 ∈ F8 , G9 ∈ F9 .

Let A8 be a finite family of Σ0
2-sets s.t. 〈A8 ;⊆〉 � 〈F8 ;⊆〉, 8 6 =.

We define the family S= {'8 ⊕ � : � ∈ A8 , 8 6 =} and the ideal
�(S) = {[G ↦→,5 (G) ⊕, ∅

′

6(G)] ∈ R
0
2(S) : 5 , 6 are computable}

of R0
2(S).

Theorem
Let F =

⋃
86= F8 . Then Rℎ

2 (F) � �(S).
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Universal Numberings

A numbering � ∈ ComL
� (S) is universal if 
 6 � for each


 ∈ ComL
� (S).

Theorem (Lachlan, 1964)
Any finite family of c.e. sets has a universal numbering.

Theorem (Badaev, Goncharov, Sorbi, 2003)
Let Sbe a finite family of Σ0

=+2-sets. Then Shas a universal
numbering iff

⋂
S ∈ S.

Theorem
Let F0 , . . . ,F= be finite classes of families of computable
functions s.t. (∀8 , 9 6 =)(∀G∈ F8)(∀H ∈ F9) [G2 = H2 ⇔ 8 = 9].
Then F =

⋃
86= F8 has a universal numbering iff

∀8 6 = [F8 has a universal numbering] iff ∀8 6 = [⋂F8 ∈ F8].
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Universal Numberings
Theorem (Lachlan, 1964)
Let Sbe a computable family with a universal numbering.
Then

⋃
G 
(G) ∈ S for any computable numbering


 : ℕ
onto−−−→ S′ ⊆ Ssuch that 
(0) ⊆ 
(1) ⊆ 
(2) ⊆ . . . .

Theorem
1. Let F be a computable class of total functions with a
universal numbering. Then (⋃G 
(G))2 ∈ �(F) for any
computable numbering 
 : ℕ

onto−−−→ F′ ⊆ F such that

(0) ⊆ 
(1) ⊆ 
(2) ⊆ . . . .

2. There are a computable class F of total functions with a
universal numbering and a computable numbering

 : ℕ

onto−−−→ F′ ⊆ F such that 
(0) ⊆ 
(1) ⊆ 
(2) ⊆ . . . and⋃
G 
(G) ∉ F.
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Cardinality and Latticeness of R0
1(S)

Questions (Ershov, 1967)
1. What can we say about the cardinalities of the Rogers

semilattices?
2. When are they lattices?

Theorem (Khutoretskii, 1971)
If |R0

1(S)| > 1, then R0
1(S) is infinite.

Theorem (Selivanov, 1976)
If |R0

1(S)| > 1, then R0
1(S) is not a lattice.
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Cardinality and Latticeness of R0
=+2(S)

Theorem (Goncharov, Sorbi, 1997)

1. Let Sbe an infinite Σ0
=+2-computable family. Then R0

=+2(S)
contains an infinite subset s.t. any two different elements
of the subset form a minimal pair.

2. Let Sbe a finite family of Σ0
=+2-sets such that |S| > 1. Then

R0
=+2(S) contains an ideal that is isomorphic to the upper

semilattice of c.e. <-degrees L0.

Corollary (Goncharov, Sorbi, 1997; Ershov, 1969)
Let Sbe a Σ0

=+2-computable family such that |S| > 1. Then
R0
=+2(S) is infinite and not a lattice.
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Cardinality and Latticeness of Rℎ
2 (F)

Let F be a computable class of families of total functions s.t.
�(F) is finite.
Theorem
Let Sbe a finite family of c.e. sets s.t. 〈S;⊆〉 � 〈�(F);⊆〉. Then
there is an epimorphism from Rℎ

2 (F) onto R0
1(S).

Corollary
If �(F) contains two elements which are comparable under
inclusion, then Rℎ

2 (F) is infinite and not a lattice.
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Cardinality and Latticeness of Rℎ
2 (F)

Let F be a computable class of families of total functions s.t.
�(F) is finite and all elements of �(F) are incomparable under
inclusion.
Theorem
If F is infinite, then Rℎ

2 (F) contains an infinite subset s.t. any
two different elements of the subset form a minimal pair.

Theorem
Let F be a finite class.
1. If |F| > |�(F)|, then Rℎ

2 (F) contains an ideal isomorphic to
R0

2(A) for some finite family of Σ0
2-sets Awith |A| > 1.

2. If |F| = |�(F)|, then |Rℎ
2 (F)| = 1.
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Cardinality and Latticeness of Rℎ
2 (F)

Corollary
Let F be a computable class of families of total functions s.t.
�(F) is finite and |Rℎ

2 (F)| > 1. Then Rℎ
2 (F) is infinite and not

a lattice.

Questions
Let F be a computable class of families of total functions s.t.
�(F) is infinite.

1. What can we say about the cardinality of Rℎ
2 (F)?

2. Could the semilattice Rℎ
2 (F) be a lattice?
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Degree Spectra of the Hereditarily Countable Families

Given a countable structure A, we define the degree spectrum
of A to be Spec(A) = {- ⊆ ℕ : ∃B � A [B 6) -]}.

For an =-family F, let Spec(F) = {- ⊆ ℕ : F is --computable}.

For every =-family F there is a structure A(F) s.t.
Spec(F) = Spec(A(F)) (see B. Khoussainov, 1986; C. Ash, J.F.
Knight, 2000; S. Goncharov, V. Harizanov, J.F. Knight et al.,
2005).

Some examples of degree spectra of families

} (Slaman; Wehner, 1998) Spec(S) = {a : a > 0};
} (Kalimullin, 2008) Spec(S) = {a : a 
 b}, where b is c.e.;
} (Csima, Kalimullin, 2010) Spec(S) = {a : a is h-immune}.
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Degree Spectra of the Hereditarily Countable Families

A family S is finitary if each set � ∈ S is finite. An
(= + 1)-family F is finitary if each =-family D ∈ F is finitary.

Theorem (Slaman; Wehner, 1998)
There is a finitary family Ws.t. Spec(W) = {a : a > 0}.

Theorem (Kalimullin, F., 2016)
There is a family Ss.t. Spec(S) = Low1 = {a : a′ > 0′}.

Theorem (Kalimullin, F., 2016)
For each = > 0 there exist =-families F= and S= s.t. F= is
finitary, Spec(F=) = Low2=−2 and Spec(S=) = Low2=−1.
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Spectral Hierarchy of the Hereditarily Countable Families

Theorem (Kalimullin, F., 2016)
Let � be a non-low= c.e. set and ( ∈ Σ0

=+3. Then there is a
computable function 5 s.t.

⊕
H,5 (H) 6) � and

G ∈ (⇔,5 (G) is low= , for each G.

Theorem (Kalimullin, F., 2016)
Let = > 0. Then for every (= − 1)-family ℭ and every finitary
=-family D, Spec(ℭ) ≠ Low2=−2 and Spec(D) ≠ Low2=−1.

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller,
Solomon, 2005 – 
 is a successor; Kalimullin, F., 2016 – 

is limit)
For each ordinal 
 < $� 

1 there is a structure Awith
Spec(A) = Low
 = {a : a(
) > 0(
)}.
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Hereditarily Countable Families of Infinite Rank

Definition
A countable set S of hereditarily countable families is said to
be a hereditarily countable family of rank 
 (
-family) if

 = lim{� : ∃F ∈ S [� is the rank of F]}.

For a computable family S= {,5 (G) : G ∈ ℕ} each pair 〈2, 4〉
such that 5 = !4 is called an enumeration index of S (note that
|2|$ = 1).

For 
 < $� 
1 , a numbering � of an 
-family S is computable if

there are an 0 ∈ O, |0 |$ = 
, and computable functions
5 : ℕ→ {1 ∈ O : 1 <$ 0}, 6 : ℕ→ ℕ s.t. 〈 5 (G), 6(G)〉 is an
enumeration index of �(G) for each G. Let !4(G) = 〈 5 (G), 6(G)〉.
Then the pair 〈0, 4〉 is called an enumeration index of S.
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Hereditarily Countable Families of Infinite Rank

Let Spec(S) = {- ⊆ ℕ : S is --computable}.

Theorem (Kalimullin, F., 2016)
Let 
 be a countable ordinal. Then for any 
-family S there is
a structure A(S) s.t. Spec(A(S)) = Spec(S).

Theorem (Kalimullin, F., 2016)
Let 
 < $� 

1 . Then there exists an (
 + 1)-family S s.t.
Spec(S) = Low
.

21



Thank you for attention!


