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Basic Definitions

Numbering of a countable set S is a surjective mapping
v:N—S.

Let H(S) be the set of all numberings of S. Let vo, vi € H(S).

Definition

We say that vy is reducible to v1 (vo < v1) if vo = v1 o f for
some computable function f. Numberings vo and v; are
called equivalent (vo = v1) if vo < v1 and v1 < vp.

Definition

A numbering v of a countable family § € 2V is computable, if
the set G, = {{x, y) : ¥ € v(x)} is c.e. (or, equivalently, there is
a computable function & such that v(x) = Wj(y)). In this case,
the family § is said to be also computable.



Approach of Goncharov-Sorbi (1997)

Let € be a family of constructive objects described by elements
of some language £. Suppose that the language & is equipped
with Godel numbering y. Let I be an interpretation of the
expressions from Z, i.e. let I : £ — 6 be any surjective

mapping.
Examples

1. Let 6 be the family of all ©-subclasses of the Cantor
space 2N % the class of all c.e. subsets of 2<N. Then we can
define I(S) = Uges{Z : 0 < Z}.

2. Let € be the set of all left-c.e. reals, & the set of all pairs
(W, g), where W C Qisa c.e. setand (—oo,q) N W # 0. Then
we can define (W, q) = sup{r e W : r < q}.



Approach of Goncharov-Sorbi (1997)

Let 6 be some class of objects, £ a language describing the
elements of 6, y a Godel numbering of &£, I an interpretation of
Z in 6.

A numbering v : N — § C 6 is called computable numbering
(relative to the interpretation I) if there exists a computable
function fs.t. v(n) = I(yf(n)) for each n € N.

Let Com}cﬁ (8) be the class of all such numberings.

The quotient structure 9%;% (S) = (Com‘? (8)/=; <) is the Rogers
semilattice of the family §. Join in 9{? (8) is induced by the
direct sum of numberings: (vo ® v1)(2x + i) = vi(x),i =0, 1.



Computable Numberings in the Arithmetical Hierarchy

Let 6 be the class Zg +1» Z be the set of all £,,+1-formulas of
arithmetics of a free variable x.

Let I(ym) = {a : Q |= ym[a]}, where Q is the standard model of
arithmetic.

Then a numbering v of a family § C 6 is called
ZO

n+1

v(m) ={a: QI ygumlal} for each m € N.
Let Comgﬂ(S) = Com‘?(&) and 9i0+1(8) = QR?(S).

n
Theorem (Goncharov, Sorbi, 1997)
A numbering v of a family § of £ -setsis 0 -computable

iff G, = {(x,y) : y € v(x)} € 0

n+1°

-computable if there exists a computable function f s.t.



Complutable Numberings of the Hereditarily Countable Families

The hereditarily countable families of rank 1 (1-families) are the
countable subsets of 2V,

The hereditarily countable families of rank (17 + 1)
((n + 1)-families) are the countable sets of n-families. The
2-families are also called the classes of families.

Let € be the class of all computable families, & be the class of
all computable numberings. Let I(y;) = v (N).

Then a numbering v of a 2-family & C €6 is called computable if
there exists a computable function f s.t. v(m) = y ) (N) (or,
equialently, there is a computable function # s.t.

v(m) = {Wh(mn,x) : x € N}). In this case, the 2-family € is also
called computable.



Complutable Numberings of the Hereditarily Countable Families

Let 6 be the class of all computable n-families, & be the class of
all their computable numberings. Let I(y,;) = v (N).

Then a numbering v of an (n + 1)-family S C 6 is called
computable if there exists a computable function f s.t.
v(m) = yrum(N).

Let Com! ,(©) = Com{ () and R!" (S) = %7(3).

If S is a computable family, then 9%‘1) (S) = 97%;’(8'(8)), where
FS)={{feNN:f=x,xeA}:AeS}.



Complutable Numberings of the Hereditarily Countable Families

Foraset A C N, let
Fo(A) ={f eNN:Tx e AVy [f(y) =x+1]}U{f eNN: f = 0},
Fn+1(A) = {%n(f) : f € &o(A)}.

For a family %, let S,,(B) = {&n(A) : A € B}.

Let % be a X0 -computable family. Then

9{2+2(93) = %Zu(e" (A)). In particular, for n = 0 we have that
Qig (9B) is isomorphic to the Rogers semilattice RS(GO(SB)) of
the class of computable functions Sy(%A).

For a class of families of computable functions %, let
C(®) ={F° : F € H}, where F° is the closure of F in the Baire
space NN,



Complutable Classes of Families of Total Functions

Let o and 9 be finite families of Zg+1-sets s.t. (oA, C) = (BRB; C).
Then R?

n+1

() = RV (B) (see Ershov’s monograph, 1977).
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Let & and © be finite classes of families of computable functions
with |§] = [C(F)[ and [C(®)] = 1.
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Let & and © be finite classes of families of computable functions
with || = |C(F)| and |C(®)| = 1. Let d be a finite family of c.e.
sets s.t. (sf;C) = (C(F); C). Then SR?(&Q) = 923(8‘). In particular,
the case is possible when || > 1 but |9R§’(‘8)| =1.
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Complutable Classes of Families of Total Functions

Let o and 9 be finite families of Zgﬂ-sets s.t. (oA, C) = (BRB; C).
Then R?

n+1

() = RV (B) (see Ershov’s monograph, 1977).

n+1

Let & and © be finite classes of families of computable functions
with || = |C(F)| and |C(®)| = 1. Let d be a finite family of c.e.
sets s.t. (sf;C) = (C(F); C). Then 9{?(&@) = 923(8‘). In particular,
the case is possible when || > 1 but |9{£’(‘8)| =1.

If § is a finite family of Zg-sets s.t. (§;C) = (®; C), then
RAS) = RI(6).
Theorem (Goncharov, Sorbi, 1997)

Let S bea 22 ,-computable family with [S| > 1. Then SJRS (S)is
infinite. In particular, the case is possible when
(& C) = (6;C) but R1(F) & RI(6).



Complutable Classes of Families of Total Functions

Let o, ..., &x be finite classes of families of computable
functions s.t. (Vi,j < n)(V6 € &;)(VH € &) [€ =X & i =]].
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Complutable Classes of Families of Total Functions

Let o, ..., &x be finite classes of families of computable
functions s.t. (Vi,j < n)(V6 € &;)(VH € &) [€ =X & i =]].

Let R = {R,, : m < n} be a family of c.e. sets such that
RiCRj& @f C @;, where G; € §;, Gj € §j.

Let dl; be a finite family of Zg—sets s.t. (sd;; C) = (F;i;C), 1 < n.



Complutable Classes of Families of Total Functions

Let o, ..., &x be finite classes of families of computable
functions s.t. (Vi,j < n)(V6 € &;)(VH € &) [€ =X & i =]].

Let R = {R,, : m < n} be a family of c.e. sets such that
RiCRj& @f C @;, where G; € §;, Gj € §j.
Let dl; be a finite family of Zg—sets s.t. (d;; C) =(F;; C), i < n.

We define the family § = {R; ® A: A € d;,i < n} and the ideal
I(S) = {[x > Wp) @ Wg@(,x)] € RY(S): f, g are computable}
of RI(S).

Let § = Uic, i- Then R1(F) = I(8).



Universal Numberings

A numbering v € Comig (8) is universal if @ < v for each
a € Cornjg (8).

Theorem (Lachlan, 1964)

Any finite family of c.e. sets has a universal numbering.

Theorem (Badaev, Goncharov, Sorbi, 2003)

Let S be a finite family of =0 -sets. Then § has a universal
numbering iff (S € S.

Theorem

Let &o, ..., §x be finite classes of families of computable
functions s.t. (Vi,j < n)(V6 € &;)(VH € &) [€ =X o i =]
Then & = ;< &i has a universal numbering iff

Vi < n [&; has a universal numbering] iff Vi < n [ &; € &l



Universal Numberings

Theorem (Lachlan, 1964)

Let S be a computable family with a universal numbering.

Then |J, a(x) € S for any computable numbering
onto

a:N— & C Ssuchthata(0) C a(l) Ca2)C....
Theorem
1. Let & be a computable class of total functions with a

universal numbering. Then (|, a(x))¢ € C(%) for any

computable numbering « : N onte, & C § such that

a@)Ca(l)ca)c....

2. There are a computable class  of total functions with a

universal numbering and a computable numbering
onto

a:N— § C Fsuchthat a(0) C a(l) Ca(2) C... and
Uy alx) ¢ .



Cardinality and Latticeness of 91?(8)

Questions (Ershov, 1967)

1. What can we say about the cardinalities of the Rogers
semilattices?

2. When are they lattices?

Theorem (Khutoretskii, 1971)
If [RY(S)| > 1, then R)(S8) is infinite.

Theorem (Selivanov, 1976)
If |9{?(8)| > 1, then 9%?(8) is not a lattice.

12



Cardinality and Latticeness of 912 +2(S)

Theorem (Goncharov, Sorbi, 1997)

1. Let 8 be an infinite X0 ,-computable family. Then & ,(S)
contains an infinite subset s.t. any two different elements
of the subset form a minimal pair.

2. Let § be a finite family of Z Lp-sets such that [S| > 1. Then
n +2(8 ) contains an ideal that is isomorphic to the upper
semilattice of c.e. m-degrees .

Corollary (Goncharov, Sorbi, 1997; Ershov, 1969)

Let S bea X0 ,-computable family such that [S| > 1. Then

. +2(«S ) is 1nf1n1te and not a lattice.

13



Cardinality and Latticeness of 9%;’(‘&)

Let & be a computable class of families of total functions s.t.
C(%) is finite.

Let S be a finite family of c.e. setss.t. (§; <) = (C(J); C). Then
there is an epimorphism from 97%;1(‘5') onto 91?(8).

Corollary
If C(%) contains two elements which are comparable under

inclusion, then 9%5’(3) is infinite and not a lattice.

14



Cardinality and Latticeness of 9%;’(‘8)

Let & be a computable class of families of total functions s.t.
C() is finite and all elements of C(&) are incomparable under
inclusion.

If & is infinite, then 9%;1(‘{9) contains an infinite subset s.t. any

two different elements of the subset form a minimal pair.

Theorem

Let § be a finite class.

1. If |§] > |C(F)|, then 935(“&) contains an ideal isomorphic to
9{3 (o) for some finite family of Zg—sets o with || > 1.

2. If [§| = |C(F)|, then |R)(F)| = 1.

15



Cardinality and Latticeness of 9%;’(‘8)

Corollary

Let & be a computable class of families of total functions s.t.
C(J) is finite and |9R§’(i§)| > 1. Then 91;’ (%) is infinite and not
a lattice.

Questions

Let & be a computable class of families of total functions s.t.
C(g) is infinite.

1. What can we say about the cardinality of 87%;’(%)?
2. Could the semilattice %5(8) be a lattice?

16



Degree Spectra of the Hereditarily Countable Families

Given a countable structure 2, we define the degree spectrum
of A to be Spec(A) = {X S N :3IB = A[B <7 X]}.

For an n-family §, let Spec(%) = {X € N : & is X-computable}.

For every n-family § there is a structure (%) s.t.

Spec(F) = Spec(A(F)) (see B. Khoussainov, 1986; C. Ash, J.F.
Knight, 2000; S. Goncharov, V. Harizanov, ].F. Knight et al.,
2005).

Some examples of degree spectra of families
© (Slaman; Wehner, 1998) Spec(S) = {a:a > 0};
© (Kalimullin, 2008) Spec(S) = {a:a £ b}, wherebisc.e,;

© (Csima, Kalimullin, 2010) Spec(S) = {a : ais h-immune}.

17



Degree Spectra of the Hereditarily Countable Families

A family § is finitary if each set D € § is finite. An
(n + 1)-family § is finitary if each n-family © €  is finitary.

Theorem (Slaman; Wehner, 1998)
There is a finitary family W s.t. Spec(%') = {a: a > 0}.

Theorem (Kalimullin, F., 2016)
There is a family S s.t. Spec(S) = Low; = {a:a’ > 0'}.
Theorem (Kalimullin, F., 2016)

For each n > 0 there exist n-families &, and &, s.t. §, is
finitary, Spec(&,) = Lowy,—» and Spec(S,,) = Lowy,_1.

18



Spectral Hierarchy of the Hereditarily Countable Families

Theorem (Kalimullin, F., 2016)

Let A be a non-low,, c.e. setand S € 22 +3- Then there is a
computable function f s.t. @y We(y) <t A and
x €5 & We(y) islowy, for each x.

Theorem (Kalimullin, F., 2016)
Let n > 0. Then for every (n — 1)-family € and every finitary

n-family D, Spec(€) # Lowy,_» and Spec(D) # Lowy,_1.

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller,
Solomon, 2005 — « is a successor; Kalimullin, F., 2016 —

is limit)

For each ordinal a < a)1CK there is a structure A with
Spec(A) = Low, = {a: a®@ > 0@},
19



Hereditarily Countable Families of Infinite Rank

A countable set S of hereditarily countable families is said to

be a hereditarily countable family of rank a (a-family) if
a =lim{p : 3F € S[p is the rank of F]}.

For a computable family § = {Wg(,) : x € N} each pair (2, e)
such that f = ¢, is called an enumeration index of S (note that
12lo =1).

CK
1

there are an a € O, |a|p = a, and computable functions
fN—->{beO:b<pa}, g:N—-Nst (f(x),g(x))isan
enumeration index of v(x) for each x. Let p.(x) = (f(x), g(x)).

For @ < 07", a numbering v of an a-family & is computable if

Then the pair (a, e) is called an enumeration index of &.

20



Hereditarily Countable Families of Infinite Rank

Let Spec(©) = {X € N : € is X-computable}.

Theorem (Kalimullin, F., 2016)
Let o be a countable ordinal. Then for any a-family € there is
a structure A(S) s.t. Spec(A(S)) = Spec(S).

Theorem (Kalimullin, F., 2016)

Leta < a)1CK . Then there exists an (a + 1)-family & s.t.
Spec(S) = Low,.

21



Thank you for attention!



