Generalized Computable Numberings and Degree Spectra of Hereditarily Countable Families

M. Faizrahmanov

Kazan (Volga Region) Federal University Volga Region Scientific-Educational Centre of Mathematics

Computability in Europe, 5–9 July 2021

Basic Definitions

Numbering of a countable set *S* is a surjective mapping $\nu : \mathbb{N} \to S$.

Let H(S) be the set of all numberings of *S*. Let $v_0, v_1 \in H(S)$.

Definition

We say that v_0 is reducible to v_1 ($v_0 \le v_1$) if $v_0 = v_1 \circ f$ for some computable function f. Numberings v_0 and v_1 are called equivalent ($v_0 \equiv v_1$) if $v_0 \le v_1$ and $v_1 \le v_0$.

Definition

A numbering ν of a countable family $\mathcal{S} \subseteq 2^{\mathbb{N}}$ is computable, if the set $G_{\nu} = \{\langle x, y \rangle : y \in \nu(x)\}$ is c.e. (or, equivalently, there is a computable function *h* such that $\nu(x) = W_{h(x)}$). In this case, the family \mathcal{S} is said to be also computable. Let \mathscr{C} be a family of constructive objects described by elements of some language \mathscr{L} . Suppose that the language \mathscr{L} is equipped with Gödel numbering γ . Let *I* be an interpretation of the expressions from \mathscr{L} , i.e. let $I : \mathscr{L} \to \mathscr{C}$ be any surjective mapping.

Examples

1. Let \mathscr{C} be the family of all Σ_1^0 -subclasses of the Cantor space $2^{\mathbb{N}}$, \mathscr{L} the class of all c.e. subsets of $2^{<\mathbb{N}}$. Then we can define $I(S) = \bigcup_{\sigma \in S} \{Z : \sigma \prec Z\}$.

2. Let \mathscr{C} be the set of all left-c.e. reals, \mathscr{L} the set of all pairs $\langle W, q \rangle$, where $W \subseteq \mathbb{Q}$ is a c.e. set and $(-\infty, q) \cap W \neq \emptyset$. Then we can define $I(W, q) = \sup\{r \in W : r < q\}$.

Let \mathscr{C} be some class of objects, \mathscr{L} a language describing the elements of \mathscr{C} , γ a Gödel numbering of \mathscr{L} , I an interpretation of \mathscr{L} in \mathscr{C} .

A numbering $\nu : \mathbb{N} \to \mathcal{S} \subseteq \mathcal{C}$ is called computable numbering (relative to the interpretation *I*) if there exists a computable function f s.t. $\nu(n) = I(\gamma_{f(n)})$ for each $n \in \mathbb{N}$.

Let $\operatorname{Com}_{I}^{\mathscr{L}}(\mathscr{S})$ be the class of all such numberings.

The quotient structure $\Re_I^{\mathscr{L}}(\mathscr{S}) = \langle \operatorname{Com}_I^{\mathscr{L}}(\mathscr{S})_{/\equiv}; \leqslant \rangle$ is the Rogers semilattice of the family \mathscr{S} . Join in $\Re_I^{\mathscr{L}}(\mathscr{S})$ is induced by the direct sum of numberings: $(\nu_0 \oplus \nu_1)(2x + i) = \nu_i(x), i = 0, 1$.

Computable Numberings in the Arithmetical Hierarchy

Let \mathscr{C} be the class Σ_{n+1}^0 , \mathscr{L} be the set of all Σ_{n+1} -formulas of arithmetics of a free variable x.

Let $I(\gamma_m) = \{a : \Omega \models \gamma_m[a]\}$, where Ω is the standard model of arithmetic.

Then a numbering v of a family $\mathcal{S} \subseteq \mathcal{C}$ is called Σ_{n+1}^{0} -computable if there exists a computable function f s.t. $v(m) = \{a : \Omega \models \gamma_{f(m)}[a]\}$ for each $m \in \mathbb{N}$. Let $\operatorname{Com}_{n+1}^{0}(\mathcal{S}) = \operatorname{Com}_{I}^{\mathcal{L}}(\mathcal{S})$ and $\mathfrak{R}_{n+1}^{0}(\mathcal{S}) = \mathfrak{R}_{I}^{\mathcal{L}}(\mathcal{S})$.

Theorem (Goncharov, Sorbi, 1997)

A numbering ν of a family δ of Σ_{n+1}^0 -sets is Σ_{n+1}^0 -computable iff $G_{\nu} = \{ \langle x, y \rangle : y \in \nu(x) \} \in \Sigma_{n+1}^0$. The hereditarily countable families of rank 1 (1-families) are the countable subsets of $2^{\mathbb{N}}$.

The hereditarily countable families of rank (n + 1)((n + 1)-families) are the countable sets of *n*-families. The 2-families are also called the classes of families.

Let \mathscr{C} be the class of all computable families, \mathscr{L} be the class of all computable numberings. Let $I(\gamma_m) = \gamma_m(\mathbb{N})$.

Then a numbering v of a 2-family $\mathfrak{S} \subseteq \mathfrak{C}$ is called **computable** if there exists a computable function f s.t. $v(m) = \gamma_{f(m)}(\mathbb{N})$ (or, equialently, there is a computable function h s.t. $v(m) = \{W_{h(m,x)} : x \in \mathbb{N}\}$). In this case, the 2-family \mathfrak{S} is also called **computable**. Let \mathscr{C} be the class of all computable *n*-families, \mathscr{L} be the class of all their computable numberings. Let $I(\gamma_m) = \gamma_m(\mathbb{N})$.

Then a numbering ν of an (n + 1)-family $\mathfrak{S} \subseteq \mathfrak{C}$ is called computable if there exists a computable function f s.t. $\nu(m) = \gamma_{f(m)}(\mathbb{N})$. Let $\operatorname{Com}_{n+1}^{h}(\mathfrak{S}) = \operatorname{Com}_{I}^{\mathscr{L}}(\mathfrak{S})$ and $\mathfrak{R}_{n+1}^{h}(\mathfrak{S}) = \mathfrak{R}_{I}^{\mathscr{L}}(\mathfrak{S})$. If \mathscr{S} is a computable family, then $\mathfrak{R}_{1}^{0}(\mathscr{S}) \cong \mathfrak{R}_{2}^{h}(\mathfrak{F}(\mathfrak{S}))$, where

If \mathcal{S} is a computable family, then $\mathcal{R}_1^{\circ}(\mathcal{S}) \cong \mathcal{R}_2^{\circ}(\mathcal{G}(\mathcal{S}))$, where $\mathcal{G}(\mathcal{S}) = \{\{f \in \mathbb{N}^{\mathbb{N}} : f = x, x \in A\} : A \in \mathcal{S}\}.$

For a set $A \subseteq \mathbb{N}$, let $\mathfrak{F}_0(A) = \{f \in \mathbb{N}^{\mathbb{N}} : \exists x \in A \forall y [f(y) = x + 1]\} \cup \{f \in \mathbb{N}^{\mathbb{N}} : f =^* 0\},$ $\mathfrak{F}_{n+1}(A) = \{\mathfrak{F}_n(f) : f \in \mathfrak{F}_0(A)\}.$

For a family \mathfrak{B} , let $\mathfrak{S}_n(\mathfrak{B}) = {\mathfrak{F}_n(A) : A \in \mathfrak{B}}.$

Theorem

Let \mathfrak{B} be a Σ_{n+2}^0 -computable family. Then $\mathfrak{R}_{n+2}^0(\mathfrak{B}) \cong \mathfrak{R}_{n+2}^h(\mathfrak{S}_n(\mathfrak{B}))$. In particular, for n = 0 we have that $\mathfrak{R}_2^0(\mathfrak{B})$ is isomorphic to the Rogers semilattice $R_2^h(\mathfrak{S}_0(\mathfrak{B}))$ of the class of computable functions $\mathfrak{S}_0(\mathfrak{B})$.

For a class of families of computable functions \mathfrak{H} , let $C(\mathfrak{H}) = \{ \mathcal{F}^c : \mathcal{F} \in \mathfrak{H} \}$, where \mathcal{F}^c is the closure of \mathcal{F} in the Baire space $\mathbb{N}^{\mathbb{N}}$.

Let \mathscr{A} and \mathscr{B} be finite families of Σ_{n+1}^0 -sets s.t. $\langle \mathscr{A}; \subseteq \rangle \cong \langle \mathscr{B}; \subseteq \rangle$. Then $\mathscr{R}_{n+1}^0(\mathscr{A}) \cong \mathscr{R}_{n+1}^0(\mathscr{B})$ (see Ershov's monograph, 1977).

Let \mathscr{A} and \mathscr{B} be finite families of Σ_{n+1}^0 -sets s.t. $\langle \mathscr{A}; \subseteq \rangle \cong \langle \mathscr{B}; \subseteq \rangle$. Then $\mathscr{R}_{n+1}^0(\mathscr{A}) \cong \mathscr{R}_{n+1}^0(\mathscr{B})$ (see Ershov's monograph, 1977).

Let \mathfrak{F} and \mathfrak{G} be finite classes of families of computable functions with $|\mathfrak{F}| = |C(\mathfrak{F})|$ and $|C(\mathfrak{G})| = 1$.

Let \mathscr{A} and \mathscr{B} be finite families of Σ_{n+1}^0 -sets s.t. $\langle \mathscr{A}; \subseteq \rangle \cong \langle \mathscr{B}; \subseteq \rangle$. Then $\mathscr{R}_{n+1}^0(\mathscr{A}) \cong \mathscr{R}_{n+1}^0(\mathscr{B})$ (see Ershov's monograph, 1977).

Let \mathfrak{F} and \mathfrak{G} be finite classes of families of computable functions with $|\mathfrak{F}| = |C(\mathfrak{F})|$ and $|C(\mathfrak{G})| = 1$. Let \mathscr{A} be a finite family of c.e. sets s.t. $\langle \mathscr{A}; \subseteq \rangle \cong \langle C(\mathfrak{F}); \subseteq \rangle$. Then $\mathfrak{R}_1^0(\mathscr{A}) \cong \mathfrak{R}_2^h(\mathfrak{F})$. In particular, the case is possible when $|\mathfrak{F}| > 1$ but $|\mathfrak{R}_2^h(\mathfrak{F})| = 1$.

Let \mathscr{A} and \mathscr{B} be finite families of Σ_{n+1}^0 -sets s.t. $\langle \mathscr{A}; \subseteq \rangle \cong \langle \mathscr{B}; \subseteq \rangle$. Then $\mathscr{R}_{n+1}^0(\mathscr{A}) \cong \mathscr{R}_{n+1}^0(\mathscr{B})$ (see Ershov's monograph, 1977).

Let \mathfrak{F} and \mathfrak{G} be finite classes of families of computable functions with $|\mathfrak{F}| = |C(\mathfrak{F})|$ and $|C(\mathfrak{G})| = 1$. Let \mathscr{A} be a finite family of c.e. sets s.t. $\langle \mathscr{A}; \subseteq \rangle \cong \langle C(\mathfrak{F}); \subseteq \rangle$. Then $\mathfrak{R}_1^0(\mathscr{A}) \cong \mathfrak{R}_2^h(\mathfrak{F})$. In particular, the case is possible when $|\mathfrak{F}| > 1$ but $|\mathfrak{R}_2^h(\mathfrak{F})| = 1$.

If \mathscr{S} is a finite family of Σ_2^0 -sets s.t. $\langle \mathscr{S}; \subseteq \rangle \cong \langle \mathfrak{G}; \subseteq \rangle$, then $\mathscr{R}_2^0(\mathscr{S}) \cong \mathscr{R}_2^h(\mathfrak{G})$.

Let \mathscr{A} and \mathscr{B} be finite families of Σ_{n+1}^0 -sets s.t. $\langle \mathscr{A}; \subseteq \rangle \cong \langle \mathscr{B}; \subseteq \rangle$. Then $\mathscr{R}_{n+1}^0(\mathscr{A}) \cong \mathscr{R}_{n+1}^0(\mathscr{B})$ (see Ershov's monograph, 1977).

Let \mathfrak{F} and \mathfrak{G} be finite classes of families of computable functions with $|\mathfrak{F}| = |C(\mathfrak{F})|$ and $|C(\mathfrak{G})| = 1$. Let \mathscr{A} be a finite family of c.e. sets s.t. $\langle \mathscr{A}; \subseteq \rangle \cong \langle C(\mathfrak{F}); \subseteq \rangle$. Then $\mathfrak{R}_1^0(\mathscr{A}) \cong \mathfrak{R}_2^h(\mathfrak{F})$. In particular, the case is possible when $|\mathfrak{F}| > 1$ but $|\mathfrak{R}_2^h(\mathfrak{F})| = 1$.

If \mathscr{S} is a finite family of Σ_2^0 -sets s.t. $\langle \mathscr{S}; \subseteq \rangle \cong \langle \mathfrak{G}; \subseteq \rangle$, then $\mathscr{R}_2^0(\mathscr{S}) \cong \mathscr{R}_2^h(\mathfrak{G})$.

Theorem (Goncharov, Sorbi, 1997)

Let \mathscr{S} be a Σ_{n+2}^0 -computable family with $|\mathscr{S}| > 1$. Then $\mathscr{R}_2^0(\mathscr{S})$ is infinite. In particular, the case is possible when $\langle \mathfrak{F}; \subseteq \rangle \cong \langle \mathfrak{G}; \subseteq \rangle$ but $\mathscr{R}_2^h(\mathfrak{F}) \not\cong \mathscr{R}_2^h(\mathfrak{G})$.

Let $\mathfrak{F}_0, \ldots, \mathfrak{F}_n$ be finite classes of families of computable functions s.t. $(\forall i, j \leq n)(\forall \mathcal{G} \in \mathfrak{F}_i)(\forall \mathcal{H} \in \mathfrak{F}_j) [\mathcal{G}^c = \mathcal{H}^c \Leftrightarrow i = j].$

Let $\mathfrak{F}_0, \ldots, \mathfrak{F}_n$ be finite classes of families of computable functions s.t. $(\forall i, j \leq n)(\forall \mathcal{G} \in \mathfrak{F}_i)(\forall \mathcal{H} \in \mathfrak{F}_j)[\mathcal{G}^c = \mathcal{H}^c \Leftrightarrow i = j].$

Let $\Re = \{R_m : m \leq n\}$ be a family of c.e. sets such that $R_i \subseteq R_j \Leftrightarrow \mathscr{G}_i^c \subseteq \mathscr{G}_j^c$, where $\mathscr{G}_i \in \mathfrak{F}_i, \mathscr{G}_j \in \mathfrak{F}_j$.

Let $\mathfrak{F}_0, \ldots, \mathfrak{F}_n$ be finite classes of families of computable functions s.t. $(\forall i, j \leq n)(\forall \mathcal{G} \in \mathfrak{F}_i)(\forall \mathcal{H} \in \mathfrak{F}_j)[\mathcal{G}^c = \mathcal{H}^c \Leftrightarrow i = j].$

Let $\Re = \{R_m : m \le n\}$ be a family of c.e. sets such that $R_i \subseteq R_j \Leftrightarrow \mathscr{G}_i^c \subseteq \mathscr{G}_j^c$, where $\mathscr{G}_i \in \mathfrak{F}_i, \mathscr{G}_j \in \mathfrak{F}_j$.

Let \mathcal{A}_i be a finite family of Σ_2^0 -sets s.t. $\langle \mathcal{A}_i; \subseteq \rangle \cong \langle \mathfrak{F}_i; \subseteq \rangle, i \leq n$.

Let $\mathfrak{F}_0, \ldots, \mathfrak{F}_n$ be finite classes of families of computable functions s.t. $(\forall i, j \leq n)(\forall \mathcal{G} \in \mathfrak{F}_i)(\forall \mathcal{H} \in \mathfrak{F}_j) [\mathcal{G}^c = \mathcal{H}^c \Leftrightarrow i = j].$

Let $\Re = \{R_m : m \leq n\}$ be a family of c.e. sets such that $R_i \subseteq R_j \Leftrightarrow \mathscr{G}_i^c \subseteq \mathscr{G}_j^c$, where $\mathscr{G}_i \in \mathfrak{F}_i, \mathscr{G}_j \in \mathfrak{F}_j$.

Let \mathcal{A}_i be a finite family of Σ_2^0 -sets s.t. $\langle \mathcal{A}_i; \subseteq \rangle \cong \langle \mathfrak{F}_i; \subseteq \rangle, i \leq n$.

We define the family $\mathscr{S} = \{R_i \oplus A : A \in \mathscr{A}_i, i \leq n\}$ and the ideal $I(\mathscr{S}) = \{[x \mapsto W_{f(x)} \oplus W_{g(x)}^{\emptyset'}] \in \mathscr{R}_2^0(\mathscr{S}) : f, g \text{ are computable}\}$ of $\mathscr{R}_2^0(\mathscr{S})$.

Theorem

Let
$$\mathfrak{F} = \bigcup_{i \leq n} \mathfrak{F}_i$$
. Then $\mathfrak{R}_2^h(\mathfrak{F}) \cong I(\mathfrak{S})$.

Universal Numberings

A numbering $\nu \in \operatorname{Com}_{I}^{\mathscr{L}}(\mathscr{S})$ is universal if $\alpha \leq \nu$ for each $\alpha \in \operatorname{Com}_{I}^{\mathscr{L}}(\mathscr{S})$.

Theorem (Lachlan, 1964)

Any finite family of c.e. sets has a universal numbering.

Theorem (Badaev, Goncharov, Sorbi, 2003)

Let \mathscr{S} be a finite family of Σ_{n+2}^0 -sets. Then \mathscr{S} has a universal numbering iff $\bigcap \mathscr{S} \in \mathscr{S}$.

Theorem

Let $\mathfrak{F}_0, \ldots, \mathfrak{F}_n$ be finite classes of families of computable functions s.t. $(\forall i, j \leq n)(\forall \mathfrak{F} \in \mathfrak{F}_i)(\forall \mathfrak{H} \in \mathfrak{F}_j) [\mathfrak{F}^c = \mathfrak{H}^c \Leftrightarrow i = j]$. Then $\mathfrak{F} = \bigcup_{i \leq n} \mathfrak{F}_i$ has a universal numbering iff $\forall i \leq n [\mathfrak{F}_i \text{ has a universal numbering}]$ iff $\forall i \leq n [\cap \mathfrak{F}_i \in \mathfrak{F}_i]$.

Theorem (Lachlan, 1964)

Let & be a computable family with a universal numbering. Then $\bigcup_x \alpha(x) \in \&$ for any computable numbering $\alpha : \mathbb{N} \xrightarrow{\text{onto}} \&' \subseteq \&$ such that $\alpha(0) \subseteq \alpha(1) \subseteq \alpha(2) \subseteq \dots$

Theorem

1. Let \mathfrak{F} be a computable class of total functions with a universal numbering. Then $(\bigcup_x \alpha(x))^c \in C(\mathfrak{F})$ for any computable numbering $\alpha : \mathbb{N} \xrightarrow{\text{onto}} \mathfrak{F}' \subseteq \mathfrak{F}$ such that $\alpha(0) \subseteq \alpha(1) \subseteq \alpha(2) \subseteq \ldots$

2. There are a computable class \mathfrak{F} of total functions with a universal numbering and a computable numbering $\alpha : \mathbb{N} \xrightarrow{\text{onto}} \mathfrak{F}' \subseteq \mathfrak{F}$ such that $\alpha(0) \subseteq \alpha(1) \subseteq \alpha(2) \subseteq \ldots$ and $\bigcup_x \alpha(x) \notin \mathfrak{F}$.

Cardinality and Latticeness of $\Re_1^0(S)$

Questions (Ershov, 1967)

- 1. What can we say about the cardinalities of the Rogers semilattices?
- 2. When are they lattices?

Theorem (Khutoretskii, 1971)

If $|\mathscr{R}_1^0(\mathscr{S})| > 1$, then $\mathscr{R}_1^0(\mathscr{S})$ is infinite.

Theorem (Selivanov, 1976)

If $|\mathscr{R}_1^0(\mathscr{S})| > 1$, then $\mathscr{R}_1^0(\mathscr{S})$ is not a lattice.

Cardinality and Latticeness of $\mathcal{R}^0_{n+2}(\mathcal{S})$

Theorem (Goncharov, Sorbi, 1997)

- 1. Let *S* be an infinite Σ_{n+2}^0 -computable family. Then $\mathscr{R}_{n+2}^0(S)$ contains an infinite subset s.t. any two different elements of the subset form a minimal pair.
- Let *S* be a finite family of Σ⁰_{n+2}-sets such that |*S*| > 1. Then *R*⁰_{n+2}(*S*) contains an ideal that is isomorphic to the upper semilattice of c.e. *m*-degrees *L*⁰.

Corollary (Goncharov, Sorbi, 1997; Ershov, 1969)

Let \mathscr{S} be a Σ_{n+2}^0 -computable family such that $|\mathscr{S}| > 1$. Then $\mathscr{R}_{n+2}^0(\mathscr{S})$ is infinite and not a lattice.

Let \mathfrak{F} be a computable class of families of total functions s.t. $C(\mathfrak{F})$ is finite.

Theorem

Let \mathscr{S} be a finite family of c.e. sets s.t. $\langle \mathscr{S}; \subseteq \rangle \cong \langle C(\mathfrak{F}); \subseteq \rangle$. Then there is an epimorphism from $\mathscr{R}_2^h(\mathfrak{F})$ onto $\mathscr{R}_1^0(\mathscr{S})$.

Corollary

If $C(\mathfrak{F})$ contains two elements which are comparable under inclusion, then $\mathfrak{R}_2^h(\mathfrak{F})$ is infinite and not a lattice.

Let \mathfrak{F} be a computable class of families of total functions s.t. $C(\mathfrak{F})$ is finite and all elements of $C(\mathfrak{F})$ are incomparable under inclusion.

Theorem

If \mathfrak{F} is infinite, then $\mathfrak{R}_2^h(\mathfrak{F})$ contains an infinite subset s.t. any two different elements of the subset form a minimal pair.

Theorem

Let \mathfrak{F} be a finite class.

1. If $|\mathfrak{F}| > |C(\mathfrak{F})|$, then $\mathfrak{R}_2^h(\mathfrak{F})$ contains an ideal isomorphic to $\mathfrak{R}_2^0(\mathfrak{A})$ for some finite family of Σ_2^0 -sets \mathfrak{A} with $|\mathfrak{A}| > 1$.

2. If $|\mathfrak{F}| = |C(\mathfrak{F})|$, then $|\mathfrak{R}_2^h(\mathfrak{F})| = 1$.

Corollary

Let \mathfrak{F} be a computable class of families of total functions s.t. $C(\mathfrak{F})$ is finite and $|\mathfrak{R}_2^h(\mathfrak{F})| > 1$. Then $\mathfrak{R}_2^h(\mathfrak{F})$ is infinite and not a lattice.

Questions

Let \mathfrak{F} be a computable class of families of total functions s.t. $C(\mathfrak{F})$ is infinite.

- 1. What can we say about the cardinality of $\mathscr{R}_{2}^{h}(\mathfrak{F})$?
- **2**. Could the semilattice $\Re_2^h(\mathfrak{F})$ be a lattice?

Degree Spectra of the Hereditarily Countable Families

Given a countable structure \mathfrak{A} , we define the degree spectrum of \mathfrak{A} to be Spec(\mathfrak{A}) = { $X \subseteq \mathbb{N} : \exists \mathfrak{B} \cong \mathfrak{A} [\mathfrak{B} \leq_T X]$ }.

For an *n*-family \mathfrak{F} , let Spec $(\mathfrak{F}) = \{X \subseteq \mathbb{N} : \mathfrak{F} \text{ is } X\text{-computable}\}.$

For every *n*-family \mathfrak{F} there is a structure $\mathfrak{A}(\mathfrak{F})$ s.t. Spec $(\mathfrak{F}) = \operatorname{Spec}(\mathfrak{A}(\mathfrak{F}))$ (see B. Khoussainov, 1986; C. Ash, J.F. Knight, 2000; S. Goncharov, V. Harizanov, J.F. Knight et al., 2005).

Some examples of degree spectra of families

- ◎ (Kalimullin, 2008) Spec(\mathcal{S}) = {a : a $\leq b$ }, where b is c.e.;
- \odot (Csima, Kalimullin, 2010) Spec(\mathscr{S}) = {a : a is h-immune}.

A family \mathcal{S} is finitary if each set $D \in \mathcal{S}$ is finite. An (n + 1)-family \mathfrak{F} is finitary if each *n*-family $\mathfrak{D} \in \mathfrak{F}$ is finitary.

Theorem (Slaman; Wehner, 1998)

There is a finitary family \mathcal{W} s.t. Spec(\mathcal{W}) = {**a** : **a** > **0**}.

Theorem (Kalimullin, F., 2016)

There is a family δ s.t. Spec(δ) = $\overline{Low}_1 = \{a : a' > 0'\}$.

Theorem (Kalimullin, F., 2016)

For each n > 0 there exist *n*-families \mathfrak{F}_n and \mathfrak{S}_n s.t. \mathfrak{F}_n is finitary, $\operatorname{Spec}(\mathfrak{F}_n) = \overline{\operatorname{Low}}_{2n-2}$ and $\operatorname{Spec}(\mathfrak{S}_n) = \overline{\operatorname{Low}}_{2n-1}$.

Spectral Hierarchy of the Hereditarily Countable Families

Theorem (Kalimullin, F., 2016)

Let *A* be a non-low_{*n*} c.e. set and $S \in \sum_{n+3}^{0}$. Then there is a computable function *f* s.t. $\bigoplus_{y} W_{f(y)} \leq_{T} A$ and $x \in S \Leftrightarrow W_{f(x)}$ is low_{*n*}, for each *x*.

Theorem (Kalimullin, F., 2016)

Let n > 0. Then for every (n - 1)-family \mathfrak{C} and every finitary n-family \mathfrak{D} , Spec(\mathfrak{C}) $\neq \overline{\mathbf{Low}}_{2n-2}$ and Spec(\mathfrak{D}) $\neq \overline{\mathbf{Low}}_{2n-1}$.

Theorem (Goncharov, Harizanov, Knight, McCoy, Miller, Solomon, 2005 – α is a successor; Kalimullin, F., 2016 – α is limit)

For each ordinal $\alpha < \omega_1^{CK}$ there is a structure \mathfrak{A} with $\operatorname{Spec}(\mathfrak{A}) = \overline{\operatorname{Low}}_{\alpha} = \{\mathbf{a} : \mathbf{a}^{(\alpha)} > \mathbf{0}^{(\alpha)}\}.$

Definition

A countable set \mathfrak{S} of hereditarily countable families is said to be a **hereditarily countable family of rank** α (α -family) if $\alpha = \lim \{\beta : \exists \mathfrak{F} \in \mathfrak{S} [\beta \text{ is the rank of } \mathfrak{F}] \}.$

For a computable family $\mathcal{S} = \{W_{f(x)} : x \in \mathbb{N}\}\$ each pair $\langle 2, e \rangle$ such that $f = \varphi_e$ is called an enumeration index of \mathcal{S} (note that $|2|_O = 1$).

For $\alpha < \omega_1^{CK}$, a numbering ν of an α -family \mathfrak{S} is computable if there are an $a \in \mathfrak{G}$, $|a|_{\mathcal{O}} = \alpha$, and computable functions $f : \mathbb{N} \to \{b \in \mathfrak{G} : b <_{\mathcal{O}} a\}, g : \mathbb{N} \to \mathbb{N}$ s.t. $\langle f(x), g(x) \rangle$ is an enumeration index of $\nu(x)$ for each x. Let $\varphi_e(x) = \langle f(x), g(x) \rangle$. Then the pair $\langle a, e \rangle$ is called an enumeration index of \mathfrak{S} . Let Spec(\mathfrak{S}) = { $X \subseteq \mathbb{N} : \mathfrak{S}$ is *X*-computable}.

Theorem (Kalimullin, F., 2016)

Let α be a countable ordinal. Then for any α -family \mathfrak{S} there is a structure $\mathfrak{A}(\mathfrak{S})$ s.t. Spec($\mathfrak{A}(\mathfrak{S})$) = Spec(\mathfrak{S}).

Theorem (Kalimullin, F., 2016)

Let $\alpha < \omega_1^{CK}$. Then there exists an $(\alpha + 1)$ -family \mathfrak{S} s.t. Spec $(\mathfrak{S}) = \overline{\mathbf{Low}}_{\alpha}$.

Thank you for attention!