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AD

Definition
Given a set A ⊆ ωω,

1 A game GA has two players, say I and II, so that each player plays
a natural number.

2 I wins if the final outcome belongs to A; Otherwise, II wins.
3 A strategy is a function σ̂ : ω<ω → ω.
4 σ̂ is a winning strategy for I if the final outcome always belong to

A as long as I plays according to σ̂; similarly for II.
5 Axiom of Determinacy, AD, says that for any set A, either I or II

has a winning strategy.
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TD

Definition
Turing determinacy (TD) says that for every set A of Turing degrees,
either A or the complement of A contains an upper cone.
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Consequences of AD

Theorem (Martin)
Over ZF, AD → sTD → TD.

The winning strategy is the “base”.

TD is more natural than AD.
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Axiom of Choice

Definition
Given a nonempty set A,

1 CCA, the countable choice for subsets of A, says that for any
countable sequence {An}n∈ω of nonempty subsets of A, there is a
function f : ω → A so that ∀n(f(n) ∈ An).

2 DCA, the dependent choice for subsets of A, says that for any
binary relation R ⊆ A × A, if ∀x ∈ A∃y ∈ AR(x, y), there is a
countable sequence elements {xn}n∈ω so that ∀nR(xn, xn+1).
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Determinacy v.s. Choice (1)

Clearly AD implies ¬AC.

Theorem (Mycielski)
ZF+ AD implies CCR.

Proof.
Given a sequence nonempty sets {An}n∈ω of reals, set
A = {n⌢(x ⊕ y) | n ∈ ω ∧ x ̸∈ An ∧ y ∈ ωω}.
I does not have a winning strategy for GA. By AD, II does. The
winning strategy τ̂ codes a choice function.
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Determinacy v.s. Choice (2)

Theorem (Kechris)
ZF+ V = L(R) + AD implies DC.

Question
Does ZF+ AD imply DCR?
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TD v.s. Choice

Theorem (Peng and Y.)
ZF+ TD implies CCR.

Question
1 Does ZF+ TD imply DCR?
2 Does ZF+ V = L(R) + TD imply DCR?
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The double jumps of minimal covers

Theorem (Spector-Sacks)
Within ZF, for any real x, there is a perfect tree T ≤T x′′ so that

For any different reals z0, z1 ∈ [T], z0 ̸≡T z1;
For each z ∈ [T], z is a minimal cover of x.

Note that for any different reals z0, z1 ∈ [T], if y has the property that
y ≤T z0 and y ≤T z1, then y ≤T x. Moreover the double jumps of the
members in [T] range over an upper cone.
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A weaker version of CCR

Lemma
If {An}n∈ω is a sequence of countable nonempty sets of reals, then
there is a choice function for the sequence.

Proof.
Suppose not. For any x, let

nx = min{n | ∀y ∈ An(y ̸≤T x)}.

Then nx is defined for every x. But by the Spector-Sacks theorem and
the countability of An, there is some y >T x so that ny = nx but
ny′′ > nx.
By TD, ny′′ > ny over an upper cone. Then ny(ω) is not defined.

So every countable set of Turing degrees has an upper bound.
Yinhe Peng and Liang Yu (Nanjing University) TD implies CCR July 8, 2021 10 / 18
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Constant function

Lemma
Suppose that f : R → R is a degree invariant function, then
f(x) = f(x′) over an upper cone.

Proof.
Suppose not. Define

lx = min{n | f(x)(n) ̸= f(x′)(n)}.

By TD, lx ≤ ly for any x ≤T y over an upper cone.
For some i ∈ {0, 1}, {x | f(x)(lx) = i} contains an upper cone. So
lx ̸= lx′ and so lx < lx′ over an upper cone.

Note that, in the lemma, the jump operator can be replaced with any
degree increasing function.
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Degree decreasing function

Lemma
If f is a degree invariant function so that f(x) ≤T x over an upper
cone, then the range of f is at most countable over an upper cone.

Proof.
By the previous Lemma, f(x′) = f(x) ≤T x <T x′ over an upper cone
and so f(x) <T x over an upper cone.
Now by the Spector-Sacks theorem, given any x over the upper cone,
there are two reals y0, y1 >T x so that y′′0 ≡T y′′1 ≥T x′′. Then
y0 >T f(y0) = f(y′′0) = f(y′′1) = f(y1) <T y1 and so f(y′′0) = f(y0) ≤T x.
So every member in the range of f over the upper cone must be
Turing below x.
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Countability of degree invariant

funciton

Lemma
Suppose that f is a degree invariant function, then the range of f must
be at most countable.

Proof.
By the previous lemma, we may assume that f(x) ̸≤T x over an upper
cone. Let

Φ(x) = f(x)⊕ x.
Then Φ(x) >T x over an upper cone and can be view as a “jump
operator”, By applying the previous lemma, Φ(x) ≥T f(x) = f(Φ(x))
over an upper cone. So f(x) ≤T x over an upper cone, a
contradiction.
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ZF + TD ⊢ CCR (1)

This is where the set theory argument comes in.
Given a sequence {An}n∈ω of nonempty sets of reals. We may assume
that each one is Turing upward closed and the sequence is
nonincreasing.
Let Bn = An \ An+1 and f(x) = {n | ∃y ∈ Bn(y ≥T x)}.
Then the range of f is countable over an upper cone, enumerated as
{ai}i∈ω. Note that each ai is infinite.
The idea is that the sets {d |

∪
n∈d Bn contains an upper cone }

generates an ultrafilter. Then {ai}i∈ω can be viewed as a “countable
decomposition” of the measure.
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ZF + TD ⊢ CCR (2)

Pick up a set a ⊆ ω so that a ∩ ai ̸= ∅ and ai \ a ̸= ∅ for each i.
Set

C0 =
∪
n∈a

Bn; and C1 =
∪
n̸∈a

Bn.

There must be some k so that Ck ranges over an upper cone.
If k = 0, then C1 is bounded and so f(x) ⊆ a for an upper cone of
degrees, a contradiction to ai \ a ̸= ∅;
If k = 1, then C0 is bounded and so f(x) ∩ a = ∅ for an upper cone of
degrees, a contradiction to ai ∩ a ̸= ∅. This is not possible.
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An application

Theorem (Woodin)
Assume ZF+ TD+ CCR, every set of reals is Suslin.

Now we may remove the assumption CCR.
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More applications

We have found a number applications of such methods, via
point-to-set principle.
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