TD implies $CC_{\mathbb{R}}$

Yinhe Peng and Liang Yu

Nanjing University

July 8, 2021

Yinhe Peng and Liang Yu (Nanjing University

TD implies CC_ℝ

▶ ◀ 볼 ▶ 볼 ∽ ි July 8, 2021 1 / 18

<ロト < 同ト < ヨト < ヨト

AD

Definition

Given a set $A \subseteq \omega^{\omega}$,

- A game G_A has two players, say I and II, so that each player plays a natural number.
- I wins if the final outcome belongs to A; Otherwise, II wins.
- **③** A strategy is a function $\hat{\sigma}: \omega^{<\omega} \to \omega$.
- $\hat{\sigma}$ is a winning strategy for I if the final outcome always belong to
 A as long as I plays according to $\hat{\sigma}$; similarly for II.
- Axiom of Determinacy, AD, says that for any set A, either I or II has a winning strategy.

< ロ > < 同 > < 三 > < 三 >

Definition

Turing determinacy (TD) says that for every set A of *Turing degrees*, either A or the complement of A contains an upper cone.

Yinhe Peng and Liang Yu (Nanjing University

< ロ > < 同 > < 三 > < 三

Consequences of AD

Theorem (Martin)

Over ZF, $AD \rightarrow sTD \rightarrow TD$.

The winning strategy is the "base".

<ロト < 同ト < ヨト < ヨト

Consequences of AD

Theorem (Martin)

Over ZF, AD \rightarrow sTD \rightarrow TD.

The winning strategy is the "base".

TD is more natural than AD.

(日)

Axiom of Choice

Definition

Given a nonempty set A,

- CC_A, the countable choice for subsets of A, says that for any countable sequence $\{A_n\}_{n \in \omega}$ of nonempty subsets of A, there is a function $f: \omega \to A$ so that $\forall n(f(n) \in A_n)$.
- OC_A, the dependent choice for subsets of A, says that for any binary relation R ⊆ A × A, if ∀x ∈ A∃y ∈ AR(x, y), there is a countable sequence elements {x_n}_{n∈ω} so that ∀nR(x_n, x_{n+1}).

< ロ > < 同 > < 三 > < 三 >

Determinacy v.s. Choice (1)

Clearly AD implies \neg AC.

Theorem (Mycielski)

ZF + AD *implies* $CC_{\mathbb{R}}$.

Proof.

Given a sequence nonempty sets $\{A_n\}_{n\in\omega}$ of reals, set $A = \{n^{\frown}(x \oplus y) \mid n \in \omega \land x \notin A_n \land y \in \omega^{\omega}\}.$ I does not have a winning strategy for G_A . By AD, II does. The winning strategy $\hat{\tau}$ codes a choice function.

《口》《聞》《臣》《臣》

Determinacy v.s. Choice (2)

Theorem (Kechris) ZF + $V = L(\mathbb{R})$ + AD *implies* DC.

Yinhe Peng and Liang Yu (Nanjing University

TD implies CC_ℝ

イロト イボト イヨト イヨト

Determinacy v.s. Choice (2)

Theorem (Kechris) ZF + $V = L(\mathbb{R})$ + AD *implies* DC.

Question

Does ZF + AD imply $DC_{\mathbb{R}}$?

< ロ > < 同 > < 三 > < 三 >

TD v.s. Choice

Theorem (Peng and Y.) ZF + TD *implies* $CC_{\mathbb{R}}$.

TD implies CC_ℝ

▶ ▲ 볼 ▶ 볼 ∽ ९. July 8, 2021 8 / 18

< □ > < □ > < □ > < □ > < □ >

Theorem (Peng and Y.) ZF + TD *implies* $CC_{\mathbb{R}}$.

Question

- Does ZF + TD imply $DC_{\mathbb{R}}$?
- 2 Does $ZF + V = L(\mathbb{R}) + TD$ imply $DC_{\mathbb{R}}$?

< ロ > < 同 > < 三 > < 三 >

The double jumps of minimal covers

Theorem (Spector-Sacks)

Within ZF, for any real x, there is a perfect tree $T \leq_T x''$ so that

- For any different reals $z_0, z_1 \in [T]$, $z_0 \not\equiv_T z_1$;
- For each $z \in [T]$, z is a minimal cover of x.

Note that for any different reals $z_0, z_1 \in [T]$, if y has the property that $y \leq_T z_0$ and $y \leq_T z_1$, then $y \leq_T x$. Moreover the double jumps of the members in [T] range over an upper cone.

< ロ > < 同 > < 回 > < 回 > < 回 > <

A weaker version of $\text{CC}_{\mathbb{R}}$

Lemma

If $\{A_n\}_{n\in\omega}$ is a sequence of countable nonempty sets of reals, then there is a choice function for the sequence.

Proof.

Suppose not. For any x, let

$$n_x = \min\{n \mid \forall y \in A_n(y \not\leq_T x)\}.$$

Then n_x is defined for every x. But by the Spector-Sacks theorem and the countability of A_n , there is some $y >_T x$ so that $n_y = n_x$ but $n_{y''} > n_x$. By TD, $n_{y''} > n_y$ over an upper cone. Then $n_{y(\omega)}$ is not defined.

So every countable set of Turing degrees has an upper bound.

Yinhe Peng and Liang Yu (Nanjing University

TD implies CC_ℝ

Constant function

Lemma

Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a degree invariant function, then f(x) = f(x') over an upper cone.

Proof.

Suppose not. Define

$$l_x = \min\{n \mid f(x)(n) \neq f(x')(n)\}.$$

By TD, $I_x \leq I_y$ for any $x \leq_T y$ over an upper cone. For some $i \in \{0, 1\}$, $\{x \mid f(x)(I_x) = i\}$ contains an upper cone. So $I_x \neq I_{x'}$ and so $I_x < I_{x'}$ over an upper cone.

Note that, in the lemma, the jump operator can be replaced with any degree increasing function.

Yinhe Peng and Liang Yu (Nanjing University

Degree decreasing function

Lemma

If f is a degree invariant function so that $f(x) \leq_T x$ over an upper cone, then the range of f is at most countable over an upper cone.

Proof.

By the previous Lemma, $f(x') = f(x) \leq_T x <_T x'$ over an upper cone and so $f(x) <_T x$ over an upper cone. Now by the Spector-Sacks theorem, given any x over the upper cone, there are two reals $y_0, y_1 >_T x$ so that $y''_0 \equiv_T y''_1 \geq_T x''$. Then $y_0 >_T f(y_0) = f(y''_0) = f(y''_1) = f(y_1) <_T y_1$ and so $f(y''_0) = f(y_0) \leq_T x$. So every member in the range of f over the upper cone must be Turing below x.

< ロ > < 同 > < 回 > < 回 >

Countability of degree invariant funciton

Lemma

Suppose that f is a degree invariant function, then the range of f must be at most countable.

Proof.

By the previous lemma, we may assume that $f(x) \leq_T x$ over an upper cone. Let

$$\Phi(x)=f(x)\oplus x.$$

Then $\Phi(x) >_T x$ over an upper cone and can be view as a "jump operator", By applying the previous lemma, $\Phi(x) \ge_T f(x) = f(\Phi(x))$ over an upper cone. So $f(x) \le_T x$ over an upper cone, a contradiction.

Yinhe Peng and Liang Yu (Nanjing Univer-

$ZF + TD \vdash CC_{\mathbb{R}}$ (1)

This is where the set theory argument comes in.

Given a sequence $\{A_n\}_{n \in \omega}$ of nonempty sets of reals. We may assume that each one is Turing upward closed and the sequence is nonincreasing.

Let
$$B_n = A_n \setminus A_{n+1}$$
 and $f(x) = \{n \mid \exists y \in B_n (y \ge_T x)\}.$

Then the range of f is countable over an upper cone, enumerated as $\{a_i\}_{i \in \omega}$. Note that each a_i is infinite.

The idea is that the sets $\{d \mid \bigcup_{n \in d} B_n \text{ contains an upper cone }\}$ generates an ultrafilter. Then $\{a_i\}_{i \in \omega}$ can be viewed as a "countable decomposition" of the measure.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$ZF + TD \vdash CC_{\mathbb{R}}$ (2)

Pick up a set $a \subseteq \omega$ so that $a \cap a_i \neq \emptyset$ and $a_i \setminus a \neq \emptyset$ for each *i*. Set

$$C_0 = \bigcup_{n \in a} B_n$$
; and $C_1 = \bigcup_{n \not\in a} B_n$.

There must be some k so that C_k ranges over an upper cone. If k = 0, then C_1 is bounded and so $f(x) \subseteq a$ for an upper cone of degrees, a contradiction to $a_i \setminus a \neq \emptyset$; If k = 1, then C_0 is bounded and so $f(x) \cap a = \emptyset$ for an upper cone of degrees, a contradiction to $a_i \cap a \neq \emptyset$. This is not possible.

Yinhe Peng and Liang Yu (Nanjing University

July 8, 2021 15 / 18

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくつ

An application

Theorem (Woodin)

Assume $ZF + TD + CC_{\mathbb{R}}$, every set of reals is Suslin.

Now we may remove the assumption $CC_{\mathbb{R}}$.

• • = • • = •

More applications

We have found a number applications of such methods, via point-to-set principle.

Yinhe Peng and Liang Yu (Nanjing University

■ ◆ ■ ▶ ■ つへで July 8, 2021 17 / 18

イロト イボト イヨト イヨト

谢谢

Yinhe Peng and Liang Yu (Nanjing Univers

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙