
Computability and non-computability of planar flows

Daniel Graça and Ning Zhong

DM/FCT, Universidade do Algarve, Portugal

Department of Mathematical Sciences, University of Cincinnati, USA

(CiE 2021, Ghent (virtual)) July 5 - 9, 2021 1 / 40



Outline

Outline

1 The problem

2 Results

3 Proof outlines

(CiE 2021, Ghent (virtual)) July 5 - 9, 2021 2 / 40



Outline

Outline

1 The problem

2 Results

3 Proof outlines

(CiE 2021, Ghent (virtual)) July 5 - 9, 2021 2 / 40



Outline

Outline

1 The problem

2 Results

3 Proof outlines

(CiE 2021, Ghent (virtual)) July 5 - 9, 2021 2 / 40



The problem

Planar flows: what are they?

A planar flow is the set {φt (x) : x ∈ E ⊆ R2, t ∈ R} ⊆ E of all solutions to a
2-dimensional differential equation

dx
dt

= f (x), the vector field f : E → R2, f ∈ C1(E)

φt (x) is the solution at time t through point x at t = 0.

Geometrically, φt (x) is a smooth
curve in the phase space E ,
called a path, a trajectory or an
orbit through x .

The phase portrait for the flow = the set of all solution curves
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The problem

The phase portrait of the coupled linear system

dx1

dt
= 3x1 + x2,

dx2

dt
= x1 + 3x2 (the phase space E = R2)
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The problem

Planar flows: the most wanted?

Main interest: Obtain informative phase portraits.

⇑ the idea of Poincaré

Study the qualitative (topological) features of the phase portraits rather
than trying to find exact solutions – hopeless for most systems.

Key: Where is the flow approaching to as t → ±∞?

⇑ called asymptotic states

asymptotic states (singular paths) divide the planar phase portrait into
separate regions; each filled with trajectories behaving in the same manner
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The problem

Asymptotic states: from the qualitative viewpoint

Qualitative perspective: relatively simple geometric figures.

For the planar system dx/dt = f (x), only three possible types of
asymptotic states (= nonwandering sets):

equilibrium points (f (x) = 0 ⇒ φt (x) = x for all t);
periodic orbits;
the unions of saddles and the trajectories connecting them.
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The problem

Examples of asymptotic states

From center outwards: a source, an attracting, a
repelling, and an attracting orbit.

The two saddles are connected.
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The problem

Asymptotic states: from the quantitative viewpoint

Quantitative perspective: many open questions.

The second part of Hilbert’s 16th
problem: Find the maximum number
and relative positions of periodic orbits
of the systems of a given degree

dx
dt

= p(x)

the components of p : R2 → R2 are
polynomials of degree n.

Centennial history of Hilbert’s 16th problem, Yu. Ilyashenko, Bulletin (new
series) of the AMS, Vol 39, No 3 (2002), 301 - 354.
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The problem

The 2nd part of Hilbert’s 16th problem from computability perspective

THE PROBLEM: Study the 2nd part of Hilbert’s 16th problem from the
computability perspective:

Can the positions of the periodic orbits be computed for certain
classes of polynomials/vector fields on R2, on a compact subset of
R2, or on a 2D manifold?

Can other time-invariant sets of a planar flow, such as the
equilibrium points, the number of the equilibrium points/periodic
orbits (if finite), the basins of attraction, the nonwandering set, be
computed?

Can the computation be uniform on certain classes of
polynomials/vector fields?

What is the computational complexity?
...
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Results

Results for structurally stable planar systems

Main Result The exact number and positions of the periodic orbits
can be computed uniformly on the set of all structurally stable systems
defined on a compact disc of R2.

⇓

The exact number and positions of the periodic orbits can be uniformly
computed on the set of structurally stable polynomial systems on a
compact disc of R2.
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Results

Results for structurally stable planar systems

The main result in layman’s terms:

I can plot the portrait of your system on my computer screen with whatever
precision you wish as long as your system is close-packed and structurally
stable.

No problem!
Structurally stable?
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Results

Definitions and facts

(1) X (D) = {f ∈ C1(D) : f points inwards along the boundary of D}, D =
closed unit disc. (Any compact set with a smooth and simple boundary OK.)

(2) SS2(D) = {f ∈ X (D) : f is structurally stable}

m
there is θ > 0 such that for any g ∈ C1(D) satisfying ‖f − g‖1 = maxx∈D{‖f (x)− g(x)‖, ‖Df (x)− Dg(x)‖} < θ, there is
a homeomorphism h : D→ D

trajectories of dx
dt = f (x) h−→ trajectories of dx

dt = g(x)

⇓
Small perturbations of f do not alter the topological (qualitative) character of
the phase portrait for the flow generated by dx/dt = f (x).

FACT SS2(D) is open and dense in C1(D) =⇒ Structurally stable systems
are typical!
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Results

A structurally stable system

limit sets before and after: 2 sinks and 1 saddle
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Results

A structurally unstable system

limit sets before: 3 sinks, 2 saddles, and 1 saddle connection;

limit sets after: 3 sinks and 2 saddles (saddle connection destroyed)
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Results

Main result There is an algorithm that on input (f , k), f ∈ SS2(D) and k > 0,
outputs the following for the planar flow dx/dt = f (x):

the exact # of the equilibrium points;

the squares of side-length ≤ 1
k each containing one equilibrium and their

union contains all equilibrium points;

the exact # of the periodic orbits;

the polygonal annuli:

∗ each has the Hausdorff width ≤ 1
k (Hausdorff width = the Hausdorff

distance between the inner and outer boundaries);
∗ each contains at least one periodic orbit; the union contains all

periodic orbits.

The preprint is available at http://arxiv.org/abs/2101.07701
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Results

Results for structurally stable planar systems

Questions:

Is the open set SS2(D) computable in C1(D)? Or can “f ∈ SS2(D)” be
decided effectively? (SS2(D) is r.e. open.)

Does the main result remain valid for SS2(R2), the set of structurally
stable systems on R2?
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Results

Results for structurally stable planar systems

Corollary There is an algorithm that on input f ∈ SS2(D) outputs
{(s,Ws) : s is a sink of f}, where Ws is the basin of attraction of s:

Ws = {x ∈ D : φt (x)→ s as t →∞} (open in R2)

s is a sink ⇐⇒ f (s) = 0 &
trajectories “near” s
exponentially converges to s as
t →∞. (Ws is a sinkhole.)

Let W be an open subset of R2.

W is r.e. open if it can be filled up by a computable sequence of open pixels.

W is co-r.e. open if R2 \ W contains a computable sequence of points that is dense in R2 \ W .

W is computable if it is r.e. and co-r.e.

(CiE 2021, Ghent (virtual)) July 5 - 9, 2021 17 / 40



Results

About basins of attraction:
Basins of attraction may have complicated topological structures as
subsets of R2; in fact, many are fractals.

Basins of attraction vary greatly from system to system.

=⇒ Basins of attraction are generally difficult to compute if not
impossible.

The basin structure for the map{
xn+1 = 3xn mod 1
yn+1 = 1.5yn + cos(2πxn)

black region = basin of attraction of sink y =∞

blank region = basin of attraction of sink y = −∞

http://www.scholarpedia.org
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Results

Structurally unstable planar systems

Many planar polynomial systems are structurally unstable. For example

ẋ = −ζx − λy + xy
ẏ = λx − ζy + 1

2 (x
2 − y2) structurally unstable for ζ = 0 and λ > 0

Question. What can we say about structurally unstable systems on a
compact or on an open set in the plane from computability perspective?

The structural stability is key to the main result.

Many structurally unstable systems are computationally bad.
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Results

Periodic orbits can be badly non-computable when the system is structurally

unstable

Example 1. There is a C∞ computable function f : D→ D such that
none of the periodic orbits of the system dx/dt = f (x) is r.e. or co-r.e.
as a closed subset of R2.

Let A be a closed subset of R2.

A is co-r.e. if R2 \ A is r.e. open. ( a global property showing an over-adumbration of A after plotting any finite number
of pixels).

A is r.e. if R2 \ A is co-r.e. open. ( a local property - no global picture after plotting finitely many given points).

A is computable if it is co-r.e. and r.e.

Question: Can the function f be a computable analytic function or a
computable polynomial?
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Results

The exact number of the periodic orbits may not be uniformly computable on a

sequence of polynomials

Example 2. There exists a computable sequence

P = {pk}, pk is a 3rd degree planar polynomial

such that the map Φ : P → N, Φ(pk ) = the number of periodic orbits of
the system dx/dt = pk (x), is continuous but non-computable.

m
the halting problem
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Results

Basins of attraction can be persistently non-computable in R2

Example 3. Let K = {x ∈ R2 : ‖x‖ ≤ 3}.

(1) There exists a computable C∞ function f : R2 → R2 such that f ∈ X (K ),
the system dx/dt = f (x) has a unique computable sink whose basin of
attraction Wf is non-computable.

(2) For any C1-neighborhood U of f , there exists a computable C∞ function
g in X (K ) such that g ∈ U, g 6= f , and the system dx/dt = g(x) has a
unique computable sink whose basin of attraction Wg is non-computable.

Non-computability can be (non-trivially) persistent under perturbations.
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Results

Basins of attraction of an analytic system can be robustly non-computable in

R3

Example 4.

(1) There exists a computable analytic function f : R3 → R3 such that the
discrete system generated by f has a computable sink but its basin of
attraction is non-computable.

(2) There is a C1-neighborhood N of f (computable from f and Df (s)) such
that for each and every g ∈ N , g has a sink (computable from g) whose
basin of attraction is non-computable.

Non-computability can be pervasive in an entire neighborhood of f : every
function in this neighborhood has a non-computable basin of attraction.
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Proof outlines

Proof outline of the main result

The proof consists of 3 algorithms (A), (B), and (C):

(A) computes the number of and locates the positions of the equilibrium
points;

(B) locates the positions of the periodic orbits; and

(C) computes the number of the periodic orbits.
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Proof outlines

Proof outline of the main result: algorithm (A)

Math underlying (A): Let dx/dt = f (x), f ∈ SS2(D).

It has only finitely many equilibrium points =⇒ possible to compute the
exact number of them.

Each equilibrium x is hyperbolic =⇒ f (x) = 0 and Df (x) is invertible
=⇒ possible to construct (A) using a computable version of the inverse
function theorem.

Hyperbolic equilibria are robust under small perturbations on f =⇒
possible to use a name of f as an input (a name of f = a poly sequence
approximating f in C1-norm).

The facts also hold true for periodic orbits.
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Proof outlines

Proof outline of the main result: (A) continued

INPUT: n0 ≥ 1 (accuracy) and a C1-name of f ; OUTPUT: a set of squares
with side length ≤ 1/n0 each contains exactly one equilibrium.

Cover D with a rational square-grid: s has side-length 1/n,n > 3n0.

S 
d(f(s), 0) > 0 

f(s) 

f(s) 

d(f(s), 0) = 0 

● 0 

● 0 

d(f (s), 0) > 0 computable; d(f (s), 0) = 0 non-computable
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Proof outlines

Proof outline of the main result: (A) continued

(1) Compute d(f (s),0) and min{‖Df (x)‖, |detDf (x)| : x ∈M(s)} (increasing
n if necessary) until

d(f (s),0) > 2−n or min{‖Df (x)‖, |detDf (x)| : x ∈M(s)} > 2−n

⇑ discard s (s contains no equilibrium)
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Proof outlines

Proof outline of the main result: (A) continued

(2) Assume that min{‖Df (x)‖, |detDf (x)| : x ∈M(s)} ≥ 2−n. Idea: Refine
s =

⋃
sj so that

f (sj ) ⊂ f (
⋃

B(xi , αi )) ⊆
J⋃

i=1

B(f (xi ), βi ) ⊂ f (N (sj ))

⇑
“0 ∈ B(f (xi ), βi )?” decidable effectively

(3) Output N (sj ) if 0 ∈
⋃

B(f (xi ), βi ); discard sj otherwise.
m

N (sj ) contains a unique equilibrium with side length ≤ 3
n ≤

1
n0
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Proof outlines

Proof outline of the main result: algorithm (B)

(B) is sophisticated: Time comes into play!

To detect periodic orbits need⇐= find where the trajectories are approaching to
as t → ±∞ on the entire D possible⇐= compute the motion of the flow for more
and more points in D over longer and longer time periods

⇑ To be able to halt the computation

Need a uniform time bound by which time (forward and backward)
all trajectories starting at sample points would have already gathered around
all asymptotic states (to be found).

Recall that periodic orbits are asymptotic states; for every point p ∈ D the
trajectory starting at p will converge to an asymptotic state as t →∞ or
t → −∞.
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Proof outlines

Proof outline of the main result: (B) continued

Old and new tools from numerical analysis, dynamical systems and
computable analysis used to construct (B):

Peixoto’s characterization theorem: A structurally stable planar system has only finitely many

equilibria/periodic orbits as its asymptotic states; all hyperbolic.

The Poincaré-Bendixson theorem =⇒ An time-invariant compact region in the phase space

containing no equilibria must contain a periodic orbit.

Persistence of hyperbolic equilibrium points and periodic orbits.

A rigorous numerical method for computing (flow) images of lattices.

A computable version of the stable manifold theorem.

A computable version of the Hartman-Grobman Theorem.

A coloring program for identifying “donut” shaped regions in the phase
space.

...

(CiE 2021, Ghent (virtual)) July 5 - 9, 2021 30 / 40



Proof outlines

Proof outline of the main result: (B) continued

Special case: the system has no saddles

Why are saddles troublesome? The uniform time bound is in jeopardy!

⇑Why?

It may take arbitrarily long time for points near a saddle moving away from it
and reaching the neighborhoods of some other asymptotic states.

The closer a point to the red without on x-axis, the longer it takes to reach γ2
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Proof outlines

Proof outline of the main result: (B) continued

What’s good if no saddles: For any θ > 0, there is a time Tθ > 0 s.t.

∀p ∈ D
{

p already θ-close to a repeller
φt (p) in θ-neighborhood of some attractor for all t ≥ Tθ

=⇒ Tθ is a (theoretical) time bound – forward or backward – for all points moving into the θ-neighborhood of the asymptotic

states (via trajectories).

=⇒ Possible to “catch” all asymptotic states within distance θ by time Tθ by following “sufficiently many” points!

ϕT(z) 

ϕT(y) 

y ● x 

●  

●  

z 

x is θ-close to a repeller; φT (y) and
φT (z) enter the θ-neighborhood of an
attractor and stay there happily thereafter.
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Proof outlines

Proof outline of the main result: (B) continued

Algorithm (B) in the spacial case:

Wanted: Locate all periodic orbits. Idea: Donut hunt.

Find donut-shaped flow images
in D for sufficiently many
sample points over sufficiently

long time periods
why
⇐= If a

donut contains no equilibrium
and keeps all trajectories inside
it from leaving, then it contains
at least one periodic orbit by
Poincarè-Bendixson theorem.
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Proof outlines

Proof of the main result – (B) continued – donut hunt

A road map for hunting good skinny donuts (a flow-chart for (B)):

Cover D with finitely many square pixels, simulate the flow using a
rigorous numerical method, and compute the (simulated flow) images of
pixels for some integer time T (and -T simultaneously).

? Are the images time-invariant from now on?

? If yes, are the time-invariant connected components donut shaped?

? If yes, is each donut good and containing no equilibrium?

? If yes, are the donuts mutually disjoint?

? If yes, is each donut skinny enough?

If yes, the happy end.

Whenever encountering NO, restart the journey with an increased time
and decreased pixel size.
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Proof outlines

Proof outline of the main result: (B) continued – donut hunt

The good donuts
can be detected by
a coloring
program.

The left is good; the right
is bad because the donut
is not a good
approximation of the
periodic orbit.

A “haircut” theorem is established for halting the coloring program: For a C2 simple
closed curve, there is δ > 0 such that the hairs – growing in the normal direction – can be cut uniformly with length δ and the tips
of hairs do not tangle after the cut.

Before the cut during pandemic lockdown Have a cut after vaccination
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Proof outlines

Proof outline of the main result: (B) continued

Full picture: Saddles exist in the system.

Potential trouble with saddles – no time bound for points near a saddle to
move away from it.

Method developed to tackle the problem:

use (A) to identify the saddles;

at each saddle, use a computable version of Hartman-Grobman’s
theorem to identify a small neighborhood V and then transform the
origin flow in V to a linear flow;

use the linear system on V – can be computed explicitly – as an oracle
to supply a good exit-approximation to every simulated trajectory
entering V , in one unit of time.

=⇒ Uniform time bounds preserved.
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Proof outlines

Proof outline of the main result: (B) continued

The linear dynamics on the orange box acting as an oracle to the original flow.

A simulated trajectory enters the yellow square =⇒ the linear system picks up a point on it, computes the linear flow starting at
this point until it reaches the orange region with sufficiently good accuracy =⇒ the original system picks up a point on the linear
trajectory in the orange region and resumes its activity.

(CiE 2021, Ghent (virtual)) July 5 - 9, 2021 37 / 40



Proof outlines

Proof outline of the main result: algorithm (C)

INPUT: the mutually disjoint good skinny donuts (= the output of (B))

OUTPUT: the number of periodic orbits

(1) For each Cj (a donut with polygonal interior- and exterior-boundary), use a
line segment lj from one vertex on the interior boundary to the nearest vertex
on the exterior boundary as a cross-section of Cj .

(2) Show that the Poincaré map Pj on lj and its derivative are computable.

(3) the number of periodic orbits inside Cj = the number of fixed points of Pj ;
the latter can be computed by algorithm (A).
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Proof outlines

Proof outline of the main result: (C) continued

The first return map. A fixed point of the first return map corresponds to a periodic
orbit.
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Proof outlines

Thank you
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