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What is a representation of the irrational numbers?

I will tell you.

Beware! | will not tell you what a representation of the real numbers is.



We identify an irrational number « with its Dedkind cut. The Dedekind
cut of an irrational « is the function o : Q — {0, 1} where

0 ifg<a
a(q) = _
1 ifg>a.

We will use the representation by Dedekind cuts to define what
representation in general is. In principle, we could have use any other
computable representation for this purpose, but it is

@ convenient to use a representation that is unique

@ a good idea to use a well-know representation.



What is a representation?

A class of functions R is a representation (of the irrational numbers) if
there exist oracle Turing machines M and N such that

e for every irrational & € (0, 1) there exists f € R such that
a = ®} and f = Of
@ for every g € R there exist an irrational o € (0,1) such that
a = 0f = &, where f = Of

When o = &%, we say that g represents « and that g is an

R-representation of «.




Example

A function C : Nt — Q is a Cauchy sequence for « if

la—C(n)| < n7t.

Let C be the class of all Cauchy sequences for irrational numbers in the
interval (0,1).

Then C is a representation.



Example

A function E : Nt — {0, 1} is the base-2 expansion of « if

a = ZE(/)Z".

i=1

Let 2€ be the class of all base-2 expansions of irrational numbers in the
interval (0,1).

Then 2& is a representation.



Example

A function T : QN [0,1] — (0, 1) is the trace function for v if

o= T(q)| < [a—gql.

Let 7 be the class of all trace functions for irrational numbers in the
interval (0,1).

Then T is a representation.



Example

Recall that the Dedekind cut of an irrational « is the function
a:Q — {0,1} where

0 ifg<a
a(q) = _
1 ifg>a.

Let D be the class of all Dedekind cuts of irrational numbers in the
interval (0,1).

Then D is a representation.



Example of something that is not a representation
(but which come close).

A function L : N — (0,1) is a left cut for « if the sequence
L(0), L(1), L(2), ..

contains (i) all the rationals less than « and (ii) only rational less that «.

A class of left cuts will not be a representation. We cannot compute the
Dedekind cut of a from a left cut for a.



Example of something that is not a representation
(but which come close).

Cauchy sequences without a modulus of convergence. Let C : N* — Q
be such that

VneNTAN(i>N — |a—C(i) <nt)

A class of such functions will not be a representation. We cannot
compute the Dedekind cut of o from such a function.



Next we define an ordering relation <s over the representations.

Intuitiviely, we want

@ Ry =<5 R, to be true if an R»-representation of « can be
subrecursively converted into an R;-representation of «
(subrecursively = "without unbounded search”)

@ Ry As Ry to be true if unbounded search is required in order to
convert Rp-representation of « into an R;-representation of «.

More intuition . ..

o If Ry <5 R, holds, then the representation R, gives more
information than the representation Ry.



More intuition . ..

Let C be a Cauchy sequence for the irrational number a.



More intuition . ..

Let C be a Cauchy sequence for the irrational number a.

How can we decide if « lies above or below 1/3?

Consider C as an oracle. (We assume that « is irrational, so « lies
strictly above or strictly below 1/3.)









We may ask C ...

e C(0)=1/3
e C(1)=1/3
e C(2)=7
e C(3)=7



We may ask C ...

e C(0)=1/3
e C(1)=1/3
e C(2)=1/3
e C(3)=1/3
e C(16)=1/3



We may ask C ...

o C(16)=1/3
o C(17)=1/3

Now, we know that « is close to 1/3, that is

but we still don't know if « lies above or below 1/3.



Now

a rational that allows
C(a sufficiently large number) =  me to conclude if «
lies above or below 1/3



Now

a rational that allows
C(a sufficiently large number) =  me to conclude if «
lies above or below 1/3

but we need unbounded search to find that number.



Now

a rational that allows
C(a sufficiently large number) =  me to conclude if «
lies above or below 1/3

but we need unbounded search to find that number.

| cannot find the number by a subrecursive computation.

| need full Turing computability.



If we have access to the Dedekind cut of «, then we can easily decide if
1/3 lies above or below a.



If we have access to the Dedekind cut of «, then we can easily decide if
1/3 lies above or below a.

e If D(1/3) =0, then 1/3 lies below «
e If D(1/3) =1, then 1/3 lies above «



If we have access to the Dedekind cut of «, then we can easily decide if
1/3 lies above or below a.

e If D(1/3) =0, then 1/3 lies below «
e If D(1/3) =1, then 1/3 lies above «

Just one question is needed. No unbounded search is required.



If we have access to the Dedekind cut of «, then we can easily decide if
1/3 lies above or below a.

e If D(1/3) =0, then 1/3 lies below «
e If D(1/3) =1, then 1/3 lies above «

Just one question is needed. No unbounded search is required.

A subrecursive computation is sufficient to answer the question.



This example shows that we cannot compute the Dedekind cut of «
subrecursively in a Cauchy sequence for a.

We want
D 4As C

where

@ D is the representation by Dedekind cuts

@ C is the representation by Cauchy sequences.



This example shows that we cannot compute the Dedekind cut of «
subrecursively in a Cauchy sequence for a.

We want
D 4As C

where

@ D is the representation by Dedekind cuts

@ C is the representation by Cauchy sequences.

In contrast, we can compute a Cauchy sequence for o subrecursively in
the Dedekind cut of a.



Let o be an irrational number between 0 and 1.

We can compute a Cauchy sequence C for « subrecursively in the
Dedekind cut of a: Let C(1) =271 and

C(n)—2-"1 if D(C(n)) =0

Cn+1) =
( ) {C(n) +27"71 otherwise.



Let o be an irrational number between 0 and 1.

We can compute a Cauchy sequence C for « subrecursively in the
Dedekind cut of a: Let C(1) =271 and

C(n)—2-"1 if D(C(n)) =0

Cn+1) =
( ) {C(n) +27"71 otherwise.

We want that
C <5 D.



Now, ...the formal definition of <s.

We need some auxiliary definitions.



We need the time bounds.

Definition

A function t : N — N is a time bound if (i) n < t(n), (ii) t is increasing
and (iii) t is time-constructible: there is a single-tape Turing machine
that, on input 17, computes t(n) in O(t(n)) steps.




We need the notation O(t)g.

Definition

Let ¢ be a time-bound and let R be a representation. Then, O(t)g
denotes the class of all irrational « in the interval (0,1) such that at least
one R-representation of « is computable by a Turing machine running in
time O(t(n)) (where n is the length of the input).




Example

Let C be the representation by Cauchy sequences. Let o € (0,1) be
irrational.

Then the following two statements are equivalent (by definition).

Q o € 0(n)
@ at least one Cauchy sequence for o can be computed by a Turing
machine running in time O(n?) (where n is the length of the input).



Example

Let 2€ be the representation by base-2 expansions. Let o € (0,1) be
irrational.

Then the following two statements are equivalent.

Q o € 0(2% )¢

@ the base-2 expansion of o can be computed by a Turing machine
running in time O(24”2) (where n is the length of the input).



Now we are ready for the definition of <g.

Definition

Let t be a time-bound. Let R; and R, be representations. The relation
R1 =<s R holds if there for any time-bound t exists a time-bound s such
that

O(t)Rz C 0(5)R1 o

If the relation R; <s R» holds, we will say that the representation R; is

subrecursive in the representation R».




Let us see why we have C <g 2€.

There is a natural subrecursive algorithm for converting the base-2
expansion of « into a Cauchy sequence for a (no unbounded search

involved).



Let us see why we have C <g 2€.

There is a natural subrecursive algorithm for converting the base-2
expansion of « into a Cauchy sequence for a (no unbounded search
involved).

Analyse that algorithm and conclude: If a Turing machine can compute
the base-2 expansion of « in time O(t(n)), then a Turing machine can
compute a Cauchy sequence for o in time O(25(").



Let us see why we have C <g 2€.

There is a natural subrecursive algorithm for converting the base-2
expansion of « into a Cauchy sequence for a (no unbounded search
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compute a Cauchy sequence for o in time O(25(").

Thus
O(t(n))2e € 0% .



Let us see why we have C <g 2€.

There is a natural subrecursive algorithm for converting the base-2
expansion of « into a Cauchy sequence for a (no unbounded search
involved).

Analyse that algorithm and conclude: If a Turing machine can compute
the base-2 expansion of « in time O(t(n)), then a Turing machine can
compute a Cauchy sequence for o in time O(25(").

Thus
O(t(n))2e € 0% .

Thus, for any time-bound t there exists a time-bound s such that
O(t(n))2e S O(s(n))c -
(this holds when s(n) = 25¢(").



Let us see why we have C <g 2€.

There is a natural subrecursive algorithm for converting the base-2
expansion of « into a Cauchy sequence for a (no unbounded search
involved).

Analyse that algorithm and conclude: If a Turing machine can compute
the base-2 expansion of « in time O(t(n)), then a Turing machine can
compute a Cauchy sequence for o in time O(25(").

Thus
O(t(n))2e € 0% .

Thus, for any time-bound t there exists a time-bound s such that
O(t(n))2e S O(s(n))c -
(this holds when s(n) = 25¢(").

Thus, we have C <5 2& (by the definition of <s).



This generalises. In general we can prove R; =<5 R, by the following
recipe.

Find a subrecursive algorithm for converting an R»-representation of «
into an Rj-representation of o (no unbounded search).



This generalises. In general we can prove R; =<5 R, by the following
recipe.

Find a subrecursive algorithm for converting an R»-representation of «
into an Rj-representation of o (no unbounded search).

Analyse that algorithm and conclude: If a Turing machine can compute
an Ry-representation of «v in time O(t(n)), then a Turing machine can
compute an Ry-representation « in time O(s;(n)) where s; is a
time-bound depending on t.



This generalises. In general we can prove R; =<5 R, by the following
recipe.

Find a subrecursive algorithm for converting an R»-representation of «
into an Rj-representation of o (no unbounded search).

Analyse that algorithm and conclude: If a Turing machine can compute
an Ry-representation of «v in time O(t(n)), then a Turing machine can
compute an Ry-representation « in time O(s;(n)) where s; is a
time-bound depending on t.

Thus, for any time-bound t there exists a time-bound s such that

O(t(m)r, S O(s(n))r, -

Thus, we have Ry <s R, (by the definition of <s).



To prove Ry As R> migh not be all that easy.

Then we have to prove that

there exists a time-bound t such that
for any time-bound s

O(t(n))r,  O(s(n))r,



To prove Ry As R> might not be all that easy ...

... which again can be proved by proving

there exists a time-bound t such that
for any time-bound s
there exists an irrational 5 € (0,1) such that

B € O(t(n))r, \ O(s(n))r:

That there for any time-bond s exists such a 3 will typically be proved by
a diagonalisation argument. Such arguments may be tedious and
involved.



The relation <g is a preorder. Thus <s induce a degree structure on the
representations (standard stuff will follow).



Let R and Q be representations.
R=sQ “def R<sQ and Q =5 R.
R <s @ “def R=<sQ and Q #As R.

We define the degree of the representation R, denoted deg(R), as the
equivalence class given by

deg(R) = { QIQ=sR}.

The set of all degrees, denoted S, is given by

S = { deg(R) | R is a representation } .

We will use a, b, c (possible decorated) to denote degrees. We will use <
and < to denote the ordering relations induced on the degrees by <5 and
~<s, respectively.



It turns out that this degree structure is a lattice. That is, there are
operators U and N on the degrees such that

@ aUb is the least upper bound of a and b

@ anb is the greatest lower bound of a and b.

forany a,b e S.



It turns out that the degree structure has a top and bottom degree.

Let 0 denote the degree of the representation by Weirauch intersections
(nested intervals).

Let 1 denote the degree of the representation by continued fractions.

We have

for any degree a.




Definition

A function | : N — Q x Q is a Weihrauch intersection for the real
number « if the left component of the pair /(i) is strictly less that the
right component of the pair /(i) (for all i € N) and

{a} = ﬂlio
i=0

where 19 denotes the open interval given by the the pair /(i).

If we have a Weihrauch intersection for an irrational number «, the we
can compute the Dedekind cut of a (we will need unbounded search). If
we have the Dedekind cut of «, we can obviously compute a Weihrauch
intersection for o (we do not need unbounded search).

The class of all Weihrauch intersections for irrationals in the intervall
(0,1) is a representation.



Definition
Let o be an irrational in the interval (0,1). The continued fraction of
is the unique function f : N — N* such that o = [0; £(1), £(2), .. ]

where
1

[0;31732733"'] - 0+

The class of all continued fractions of irrationals in the intervall (0,1) is a
representation.



Weihrauch intersections

Cauchy sequences

Base-b expansions Base-b’ expansion

/ N\

Base-b . -b' .
ase-b sum approx Dedekind cuts Base-b’ sum approx

from below from above
Best approx. Best approx.
from below from above

Continued fractions

Figure 1: Overview.



arXiv:2304.07227 [pdf, ps, other] math.LO cs.CC

On representations of real numbers and the computational complexity of
converting between such representations.

Authors: Amir M. Ben-Amram, Lars Kristiansen, Jakob Grue Simonsen

Another paper recently submitted to a journal (but not to arXive):
A Degree Structure on Representations of Irrational Numbers

Authors: Amir M. Ben-Amram, Lars Kristiansen






