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Where do | come from, where am | going to?

@ Effectivize a notion so that it is useful in a
computably-defined world

@ Use the effective notion to prove results in the classical world

© Effectivize it some more so that you can use it in a
finite-automata defined world — Use the finite-state notion
to prove results in the classical world



Effective Hausdorff dimension: Kolmogorov complexity

@ Given U a universal Turing Machine, and o € 2<%, Ky(o) is
the Kolmogorov complexity of o, which is the length of the
shortest description of o (from which U recovers o):

Ky(o) = min{|p| |U(p) = o'}

@ This concept is invariant on U up to an additive constant, we
drop the U
K(o) = min{|p| |U(p) =o'}



Effective Hausdorff dimension: Cantor space

Theorem (M 2002)
For x € 2%,

dim(x) = liminf
n

K(x[1..n])

It extends the notion of Martin-Lof random sequence:
x is ML-random iff there is a ¢ such that for all n,

K(x[1..n]) >n—c

For a set E C 2%,
dim(E) = sup dim(x)
x€E



Why do we effectivize?

@ To quantify
@ Partial randomness

e Geometric measure theory (correspondence principles)



Sample results

o (Hitchcock 2005) If E is a union of MY-definable sets then
dimy(E) = dim(E)

@ There are AS-degrees of dimension 1 with no ML-random reals



Most extreme effectivitation: Finite-state dimension
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Given a finite-state transducer D with input and output binary
alphabet (2-FST),

Kp(o) =min{lp|[D(p) =cVp=0}



Most extreme effectivitation: Finite-state dimension

Theorem (Doty Moser 2006)
For x € 2%,

Kp(x[1..n])

dim2«(x) = inf liminf
FS() D2—FST n n

For a different input alphabet x € {0,...,b—1}¥

‘ _ .. . Kp(x[1..n])
b D
= inf_liminf ~222
dimpg(x) punfplimin p
Foraset EC{0,...,b—1}¥,

K 1.
dimBg(E) = Dbin%‘ST sup liminf D(X’En])
- x€g M



Sample result

Theorem

(Lutz M 2021) There is an algorithm that computes an absolutely
normal real number in nearly-linear time




Effective Hausdorff dimension in Euclidean space

We identify x € 2% with the real number with binary
representation 0.x (also denoted x)
For x € [0,1],

dim(x) = liminf

At Finite-State level, the alphabet matters, so for b € N we
identify x € {0,..., b — 1}* with the real number in base b, 0.x

liminf Kp(xL-n])

n

K(x[1..n])

. b .
dimps(x) = inf



Effective dimension in Euclidean space: adding geometry

Definition (Kolmogorov complexity of x at precision ) J

Ks(x) = inf {K(o)| |x — 0.0] < 8}

For x € [0,1],

. Ks(x)
dim(x) = Igﬂéﬂfw



Using information content at precision 9 for FS

For D a finite-state transducer with input and output alphabet
{0,...,b—1} (beN), for x € [0,1],

KDyg(X) = inf {KD(O')| |X — 0.0‘| < (5}

Theorem (M 2022)
For x € [0,1],

fio _ € limi DJ(X)
impg(x) bmFST it log(1/6)




Effective Hausdorff dimension in other separable metric
spaces

Let (X, p) be a separable metric space and let D C X be a
countable dense set (fix f : 2<% — D)

Definition (Kolmogorov complexity of x at precision §)

Ks(x) = inf {K(0) | p(x. F(o)) < 5}

Definition (Lutz et al 2022)

The algorithmic dimension of a point x € X is

. L K(x)
dim(x) = lim inf 3 175)




Using information content at precision 9 for FS

For D a finite-state transducer with input and output alphabet
{0,...,b—1} (b€ N), x € X,

Kp,s(x) = inf{Kp(o) [ p(x, f(0)) <}

 Kpa)
L, D.s
= _inf liminf
dimpg(x) DbUFST 5500 log(1/9)






The relativization ingredient

KA(e) = min {|p| |U4(p) = o }
KA(x) = inf {KA(U) | p(x, F(0)) < 5}

| KA
AimA(x) = fminf s

And for aset E C X

dim?(E) = sup dim”?(x)
x€E



Hausdorff definition of dimension (1919)

Let (X, p) be a separable metric space

@ For EC X and § > 0, a d-cover of E is a countable collection
U such that for all U € U, diam(U) < ¢ and

EclJu
Ueld

@ Fors >0,
H*(E) = lims_0infy/ is a 5-cover of E ZUEU diam(U)®

The Hausdorff dimension of E C X is
dimg(E) = inf{s|H*(E) =0}




Point-to-set principle

Theorem (Lutz Lutz 2018, Lutz et al 2022)
Let E C X, then

dimy(E) = min dim?(E)

Two possible directions:

@ Use the point-to-set principle to prove results in geometric
measure theory

@ Analyze the point-to-set principle to understand
effectivizations of dimension



Application of point to set principles to fractal geometry:
projection formula

Theorem (Marstrand 1954, Mattila 1975)

Let E C R" be an analytic set with dimy(E) =s. Then for
almost every e € S"1, dimy(p.E) = min{s, 1}

It does not hold for arbitrary E (assuming CH). Recently an
extension using PSPs

Theorem (N.Lutz Stull 2018)

Let E CR" be an arbitrary set with dimy(E) = dimp(E) = s.
Then for almost every e € S"~1, dimp(peE) = min{s, 1}




Hausdorff optimal oracles (Stull 2022)

(Informal) A is an Hausdorff optimal oracle for E if
dimy (E) = dim”(E) and any oracle A, B does not decrease
dim™B(x) for some x € E

Theorem (Stull 2022)

Let E CR"” be a set that has a Hausdorff optimal oracle. Then for
almost every e € S"1, dimy(peE) = min{dimy(E), 1}

All known cases of the projection theorem are particular cases of
this



Revisiting the PTSPs

Let D C X be a countable dense set, let us consider different
enumerators f : 2<% — D

K{(x) = inf {K(0) |o(x. F(o)) < 6}

Definition
The algorithmic dimension of a point x € X with enumerator f is

I
dim(x) = lim nf 47




Theorem (M 2022)
Let E C X. Then

dimy(€) = min dim’ (E).

22<w—D




Some consequences

@ Relativization can be substituted by dense set enumeration

@ This is a robust alternative to relativization for Finite-State
dimension

@ for each enumeration f we can have a robust definition of
finite-state dimension dimfq

KF (X)

o . .. D,s
£ f_=20r 2
dlanS(X) DQTFSI I(5—>(I)rl Iog(]‘/(s)



Finite-State dimension PTSP

Theorem (M 2022)
Let E C[0,1).

dimp(E) = min Ddimgs(E).




What we can learn from this

o The oracle for which dimg(E) = minaco<w dim”(E) requires
a single (functional) query

@ It can be interesting to separate compression and relativization

@ The concept of optimal oracles from (Stull 2022) should be
revisited for optimal enumerators



Further directions

@ For computability: Classification of PSP enumerators/oracles
of a set

@ For geometric m.t.: Can sets with optimal
enumerators/oracles replace analytic sets in different known
results?
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