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What is “Power from Random Strings”

Denote by KU(x) the Kolmogorov complexity of x with
respect to a universal decompressor U—the minimal length
of a program that outputs x .
Denote by RU the oracle function that outputs KU(x) on
input x .
In the sense of computational complexity, how strong is this
oracle?
Consider, for example, PR :=

⋂
U PRU . What are upper and

lower bounds for this class? The same questions are arouses
for BPPR,PR

tt,. . .
Partial answers to this questions were done in works
Allender, Lempp, Hirahara, Fortnow,. . . with co-authors.
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Motivation: why should we research PR,BPPR?..

This examination raises interesting questions in areas such
as derandomization and interactive proofs within
computational complexity.
This research can help to understand the complexity of
Minimal Circuit Size Problem (MCSP):
given the truth-table of a Boolean function f and a number
k , does there exist a Boolean circuit of size at most k
computing f?
Open problem: Is MCSP NP-complete?
MSCP is close to the following notion in resource-bounded
Kolmogorov complexity KT.
KT (x) := min{|p|+ t : ∀i ≤ |x |+ 1, ∀b ∈ {0,1, ∗} :
U(p, i ,b) = 1 ⇐⇒ b = xi and U works in time t}.
Usually, problems in plain Kolmogorov complexity are
easier than the same problems in resource-bounded
Kolmogorov complexity.
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Lower bounds I

Theorem (2005;Allender, Buhrman, Koucky, van Melkebeek,
Ronneburger)

PR = BPPR ;
PSPACE ⊆ PR .

Idea of the proof: oracle R allows to distinguish random strings
from pseudo-random. In fact authors do not need oracle
function, they used {x |K(x) > |x |

2 }.

Theorem (2006; Allender, Buhrman, Koucky)

H ∈ P/polyR ;
NEXP ⊆ NPR .

Here H is the Halting problem.

The proofs used interactive proofs and KT.
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Lower bounds II

Theorem (2010, Buhrman, Fortnow, Koucky, Loff)

BPP ⊆ PR
tt . Here tt means truth-table reductions.

Theorem (2020, Hirahara)

EXPNP ⊆ PR ;
NEXP ⊆ BPPR

tt .
The proofs use local-decoding codes, pseudo-random generators,
interactive proofs.
These proofs use oracle-function R (not just the set of random
strings). The results are still valid if the oracle-function gives
the value with logarithmic precision.
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Upper bounds

Theorem (2014, M. Cai, R. Downey, R. Epstein, S. Lempp, and
J. Miller )

Classes PR and NPR contains only decidable languages.
Here R is the oracle function for plain or prefix complexity.

Theorem (2013, Allender, Friedman, Gasarch)

PR
tt ⊆ PSPACE;

PR,NPR ⊆ EXPSPACE.
Here R is the oracle function for prefix complexity.

The idea is to use the main theorem about prefix
complexity—its connection with universal semi-measures.
The statements above are reduced to some game on Turing
machines. The authors show that defining a winning player in
such games belongs to PSPACE/EXPSPACE. This allows (by
some reasons) to prove the upper bounds.
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Game for tt-reduction

Let M be a polynomial time Turing machine that has
access to oracle O. This machine implements tt-reduction,
i.e. on inputs of length n the machine M asks poly(n)
questions to oracle O. After this machine outputs 1 or 0.
Initially O is empty. Let x be some string. Consider the
following game. The goal of Alice is MO(x) = 1, the goal of
Bob is MO(x) = 0. Alice and Bob can add strings to O for
some cost. Specifically, adding string y costs v(y) for some
function v .
The players take turns, but they can skip their turn if the
current value MO(x) is acceptable for them. Initially Alice
has cA dollars, Bob has cB dollars.
The problem is to decide the winner by (x , cA, cB).
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New results

Theorem

BPPR
tt ⊆ AEXPpoly.

Here AEXPpoly is the class of languages decidable in
exponential time by an alternating Turing machine that
switches from an existential to a universal state or vice versa at
most polynomial times.

Theorem (Informal)
The games that appears in the proof of the following statements
PR

tt ⊆ PSPACE and PR,NPR ⊆ EXPSPACE are PSPACE- and
EXPSPACE-complete.

This means that current methods can not provide better upper
bounds for PR , NPR and PR

tt than known.
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Sub-adaptive reductions

Definition
A machine M with an oracle access is called sub-adaptive if for
every input all nodes in the reduction tree (i.e., all the oracle
queries) are different.
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Bounds for sub-adaptive reductions

Theorem

PR
sa ⊆ EXP.

Recall that for adaptive reduction the upper bound is
EXPSPACE, for tt-reduction the upper bound is PSPACE.
We can consider a “mixture” of tt-reduction and sub-adaptive
reduction and also get EXP as an upper bound.

Open problem

Is there any non-trivial lower bounds for PR
sa?
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