

Improved Complexity Analysis
of Quasi-Polynomial Algorithms

Solving Parity Games

Paweł Parys, Aleksander Wiącek
University of Warsaw

CiE 2023, Batumi

Parity games

● Priorities on vertices
● Player owning the current vertex choses the next vertex
● Player  wins if the biggest priority seen infinitely often is even.

3
1

2

Parity games

● Priorities on vertices
● Player owning the current vertex choses the next vertex
● Player  wins if the biggest priority seen infinitely often is even.

Algorithmic problem:
Given a game graph, decide which player has a winning strategy.

Long standing open problem:
Can we solve parity games in PTIME?

3
1

2

Parity games

Recent results

Long standing open problem:
Decide in PTIME which player has a winning strategy.

Recent result:
This can be decided in quasi-polynomial time, i.e. nO(log n)

A few algorithms achieving this:
● play summaries - Calude, Jain, Khoussainov, Li, Stephan 2017
● antagonistic play summaries -

Fearnley, Jain, Schewe, Stephan, Wojtczak 2017
● succinct progress measures - Jurdziński, Lazić 2018
● register games - Lehtinen 2018
● recursive à la Zielonka - Parys 2019
● improved recursive à la Zielonka -

Lehtinen, Schewe, Wojtczak 2019
● symmetric progress measures -

Jurdziński, Morvan, Ohlmann, Thejaswini 2020
● strategy iteration - Koh, Loho 2021

This paper:

Small improvement in the complexity analysis of the algorithms

Previous: O(mdn)

New: O(m–n)

where
n – number of nodes
m – number of edges
d – number of priorities
(we skip polylogarithmic factors)

log2e+log2(d/log2n)

d
1 log2e+log2(d/log2n)

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

(2,2)-universal

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

(2,2)-universal

Examples:

Cn,h =

Cn,h-1Cn,h-1Cn,h-1

...

n

Pn,h =

P⌊n/2⌋,h-1 P⌊n/2⌋,h-1
...

Pn,h-1
P⌊n/2⌋,h-1 P⌊n/2⌋,h-1

...

⌊n/2⌋ ⌊n/2⌋

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊n/2⌋,h

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

(2,2)-universal

Examples:

Cn,h =

Cn,h-1Cn,h-1Cn,h-1

...

n

Pn,h =

P⌊n/2⌋,h-1 P⌊n/2⌋,h-1
...

Pn,h-1
P⌊n/2⌋,h-1 P⌊n/2⌋,h-1

...

⌊n/2⌋ ⌊n/2⌋

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊n/2⌋,h

size nlg(h/lg n)+O(1)

size nlg n + lg(h/lg n)+O(1)

size nh

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊n/2⌋,h

Why is it (n,h)-universal?

Universal trees

A tree U (of height h) is (n,h)-universal if every tree of height h with n leaves
embeds in U.

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊(n-1)/2⌋,h

Why is it (n,h)-universal?
Take any tree T of height h with n leaves.

≤⌊(n-1)/2⌋ leaves≤⌊n/2⌋ leaves

Subtree with the middle leaf goes to Sn,h-1.
Left and right part have at most ⌊n/2⌋ or ⌊(n-1)/2⌋ leaves.

Why universal trees?

1) It is enough to consider positional strategies: given a node, player chooses
 some fixed successor, no matter what was the history of the play.
 If a player can win, then he can win positionally.

Consequence: the problem is in NP∩coNP.
In fact it is also in UP∩coUP (Jurdziński 1998)
The search variant is in PLS, PPAD, CLS (Daskalakis, Papadimitriou 2011)

3
1

2

Why universal trees?

1) It is enough to consider positional strategies: given a node, player choses
 some fixed successor, no matter what was the history of the play.
 If a player can win, then he can win positionally.

2) After fixing a positional strategy, a game graph defines a tree
 of height d/2 with n leaves (game node = tree leaf)

3 11 1

2 22 4

Why universal trees?

1) It is enough to consider positional strategies: given a node, player choses
 some fixed successor, no matter what was the history of the play.
 If a player can win, then he can win positionally.

2) After fixing a positional strategy, a game graph defines a tree
 of height d/2 with n leaves (game node = tree leaf)

3) Idea: checking a universal tree = checking all positional strategies

3 11 1

2 22 4

Why universal trees?

All known quasipolynomial algorithms solving parity games use (explicitly or
implicitly) universal trees.

Is this necessary?
Papers
Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys 2019
Arnold, Niwiński, Parys 2021
define two general approaches such that
● all known quasipolynomial algorithms follow these approaches
● every algorithm following this approach has to use a universal tree

Why universal trees?

All known quasipolynomial algorithms solving parity games use (explicitly or
implicitly) universal trees.

Is this necessary?
Papers
Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys 2019
Arnold, Niwiński, Parys 2021
define two general approaches such that
● all known quasipolynomial algorithms follow these approaches
● every algorithm following this approach has to use a universal tree

Complexity of the (best) algorithms?

O(m.|Sn,d/2|)

Improvement 1: this can be changed to

O(m.|Sn/2,d/2|)
 i.e., we can use universal trees for n/2 leaves

(not really new – already observed in some older papers,
but not present in papers with the best complexity)

Why universal trees?

Complexity of the (best) algorithms?

O(m.|Sn,d/2|)

Improvement 1: this can be changed to

O(m.|Sn/2,d/2|)
 i.e., we can use universal trees for n/2 leaves

(not really new – already observed in some older papers,
but not present in papers with the best complexity)

Idea: map only nodes of odd priority (or only nodes of even priority)
 to leaves of the universal tree.

 There are at most n/2 of them.

Why universal trees?

Complexity of the (best) algorithms?

O(m.|Sn,d/2|)

Improvement 1: this can be changed to

O(m.|Sn/2,d/2|)
 i.e., we can use universal trees for n/2 leaves

(not really new – already observed in some older papers,
but not present in papers with the best complexity)

Idea: map only nodes of odd priority (or only nodes of even priority)
 to leaves of the universal tree.

 There are at most n/2 of them.

Anyway: it is essential to bound the size of universal trees.

What is the size?

Recursive formula:
|S0,h|=0
|Sn,0|=1
|Sn,h|=|Sn,h-1|+|S⌊n/2⌋,h|+|S⌊(n-1)/2⌋,h|

|Sn,h|≤n.()≤n

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊(n-1)/2⌋,h

h–1+⌊log2n⌋
 ⌊log2n⌋

1+log2e+log2(1+h/log2n)

Theorem

(we did better analysis – previous bound was greater h times)

What is the size?

Recursive formula:
|S0,h|=0
|Sn,0|=1
|Sn,h|=|Sn,h-1|+|S⌊n/2⌋,h|+|S⌊(n-1)/2⌋,h|

|Sn,h|≤n.()≤n

Sn,h =
S⌊n/2⌋,h

Sn,h-1

S⌊(n-1)/2⌋,h

h–1+⌊log2n⌋
 ⌊log2n⌋

1+log2e+log2(1+h/log2n)

Theorem

(we did better analysis – previous bound was greater h times)

Lower bound?
Every (n,h)-universal tree satisfies

|Un,h|≥()≥(–)
h+⌊log2n⌋
 ⌊log2n⌋

log2(1+h/log2n)n
2

(Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys 2019 + our improvements)

What is the size?

|Sn,h|≤n.()≤n
h–1+⌊log2n⌋
 ⌊log2n⌋

1+log2e+log2(1+h/log2n)

Upper bound:

Lower bound:

|Un,h|≥()≥(–)
h+⌊log2n⌋
 ⌊log2n⌋

log2(1+h/log2n)n
2

upper bound
lower bound ≤n

What is the size?

|Sn,h|≤n.()≤n
h–1+⌊log2n⌋
 ⌊log2n⌋

1+log2e+log2(1+h/log2n)

Upper bound:

Lower bound:

|Un,h|≥()≥(–)
h+⌊log2n⌋
 ⌊log2n⌋

log2(1+h/log2n)n
2

upper bound
lower bound ≤n

Open questions:
● Can this be improved?
● Is there any universal tree smaller than Sn,h?

What is the size?
Open questions:
● Can the bounds be improved?
● Is there any universal tree smaller than Sn,h?

Partial answers:
● For h=2 the tree Sn,2 is optimal.
● There is exists a “strange” (5,3)-universal tree of the same size as S5,3

Summary

Thank you!

Small improvement in the complexity of solving parity games:

Previous: O(mdn) New:

Small improvement in bounds for size of (n,h)-universal tree:

log2e+log2(d/log2n)
d
1 log2e+log2(d/log2n)O(m–n)

upper bound
lower bound ≤n (previously: nh)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24

