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A logical abyss

In a nutshell, this talk reports on my joint project with Dag Normann (U.

of Oslo) on the computability theory of the uncountable.

Kleene’s higher-order computability theory based on S1-S9 and its
recent lambda calculus formulation due to the authors.

The main message: there are computational operations that are
mathematically extremely close but logically extremely different.

How different? Computable in Kleene’s quantifier ∃2 (≈ Turing
jump) versus computable in Kleene’s ∃3 (≈ SOA) but not in
weaker oracles.

Why? The ‘∃2-side’ deals (exactly) with function classes that have
a built-in approximation-device for function values
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Kleene computability theory Exploring the abyss

Turing

Turing’s ‘machine’ framework (1936): first intuitively convincing
notion of computing with real numbers (Entscheidungsproblem).

Complexity theory studies computation with restricted resources.

Turing machines may or may not produce an output after finitely
many steps: partiality and the Halting problem.
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Kleene computability theory Exploring the abyss

Turing and Kleene

Kleene’s S1-S9 are computation schemes that formalise

X is computable in Y

for objects X ,Y of finite type (essentially most of ordinary math).

S1-S9-computability extends Turing computability; the latter is
restricted to X ,Y being real numbers.

S1-S8 merely provide a kind of primitive recursion while S9
hard-codes the recursion theorem in an ad hoc way.
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A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.
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Why study Kleene’s computability theory?

Kleene’s S1-S9 provides a/the most general model of computation
for objects of finite type.

It also has a unique closure property called Gandy selection,
essentially a computational version of the Axiom of Choice.

(∀xσ)(∃y τ )A(x , y) → (∃F σ→τ )︸ ︷︷ ︸
choice function

(∀xσ)A(x ,F (x)).

Under certain restrictions, Gandy selection (and variations) guarantees:

(∀ computable xσ)(∃ computable y τ )A(x , y)︸ ︷︷ ︸
decidable↓

(∃ computable F σ→τ )(∀ computable xσ)A(x ,F (x)).
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Some oracles

The Halting problem/Turing jump has the following counterpart:

(∀f : N → N)(∃2(f ) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

Kleene’s quantifier ∃2 is discontinuous at f = 11 . . . .

Similarly: S2k decides the truth of φ ∈ Π1
k (Sieg-Feferman).

The ‘hyperjump’ functional S21 is called the Suslin functional.

Everything we do is computable in Kleene’s quantifier ∃3:

(∀Y : NN → N)(∃3(Y ) = 0 ↔ (∃f ∈ NN)(Y (f ) = 0)).

which yields full second-order arithmetic.

Historically, the focus of Kleene’s computability theory was normal
functionals (which compute ∃2 or ∃3). (Hilbert-Bernays, Tait)
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The non-normal abyss

Kleene’s quantifiers ∃2 and ∃3:

(∀f : N → N)(∃2(f ) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

(∀Y : NN → N)(∃3(Y ) = 0 ↔ (∃f ∈ NN)(Y (f ) = 0)).

Huge abyss between ∃2 and ∃3 in terms of computational strength.

This talk:

(a) we identify basic (non-normal) functionals that are computable in ∃2

(b) and for which slight variations are computable in ∃3 but not
computable in any functional S2k (which decides Π1

k -formulas).

Item (a) deals (exactly) with definitions that have a built-in
approximation-device for function values.
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A regular abyss just beyond the continuous

We always study f : [0, 1] → R for well-known function classes.

f is regulated (aka regular) if the left and right limits f (x−) and
f (x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e.
f (x) = f (x+) everywhere.

∃2 computes supx∈[p,q] f (x) for any cadlag f : [0, 1] → R and
p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) for any regulated f : [0, 1] → R and
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f (x) = f (x−) allows us to approximate f (x)

given only f (q) for all q ∈ Q ∩ [0, 1].
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An abyss among the Baire functions

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

∃2 computes supx∈[p,q] f (x) given Baire 1 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of continuous functions.

∃3 computes supx∈[p,q] f (x) given Baire 2 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of Baire 1 functions.

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for Baire 2 functions (holds for any k).

Borderline: the Suslin functional S21 computes supx∈[p,q] f (x) given
effectively Baire 2 f : [0, 1] → [0, 1], p, q ∈ [0, 1], and the
associated double sequence of continuous functions.
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Out there: quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Some properties:

Studied by Baire, Volterra, Hankel, . . . starting ca 1870.

Cliquish = continuity points are dense = pointwise discontinuous.

There are 2|R| non-measurable quasi-cont. functions and 2|R|

non-Borel measurable quasi-cont. functions.

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).
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(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Some properties:

Studied by Baire, Volterra, Hankel, . . . starting ca 1870.

Cliquish = continuity points are dense = pointwise discontinuous.

There are 2|R| non-measurable quasi-cont. functions and 2|R|

non-Borel measurable quasi-cont. functions.

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).
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Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

∃2 computes supx∈[p,q] f (x) given quasi-continuous
f : [0, 1] → [0, 1], p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) given cliquish f : [0, 1] → [0, 1],
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for cliquish functions (holds for any k).

Note that quasi-continuity allows us to approximate f (x) given
only f (q) for all q ∈ Q ∩ [0, 1].
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Similar theorems

The supremum principle is not special; the same abyss is observed
for other basic properties.

Coverings lemmas (Cousin, Vitali, Heine-Borel, . . . ) for
coverings ∪x∈[0,1]B(x ,Ψ(x)) and Ψ : [0, 1] → R+.

Finding an RM-code for the set of continuity points Cf .

Deciding whether f is continuous at a given real x ∈ [0, 1].

Jordan decomposition theorem.

For a Riemann integrable f : [0, 1] → [0, 1] with∫ 1
0 f (x)dx = 0, find x ∈ [0, 1] such that f (x) = 0.

. . .

Finally, how do we prove our negative results?
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The uncountability of R

Cantor’s first set theory paper (1874): uncountability of R.

Cantor realisers (CR) perform the following associated operation:

on input a countable set X ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y ) where Y : R → N is
assumed to be injective (or even bijective) on X .

∃3 can compute a CR, but S2k cannot compute a CR (hold for any k).
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Cantor realisers

Cantor realisers (CR) perform the following operation:

on input a countable set A ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y ) where Y : R → N is
injective (or even bijective) on X .

∃3 can compute a CR, but no S2k can compute a CR.

Our negative results are obtained by computing a CR from the
functionals at hand using:

f (x) :=

{
1

2Y (x)+1 if x ∈ X

0 otherwise

which is BV , semi-continuous, cliquish, . . . and is found in the
literature.
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The abyss and its origin

The abyss:

(a) there are basic (non-normal) functionals that are computable in ∃2.

(b) and for which slight variations are computable in ∃3, but not
computable in S2k .

Its origin: item (a) deals exactly with definitions that have a
built-in approximation-device for function values.

Like item (a): Baire 1, effectively Baire n, normalised bounded

variation, regulated such that f (x) = f (x−)+f (x+)
2 everywhere.

Like item (b): simple continuity, semi-continuity, fragmented,
bounded variation, Baire 1∗, Fσ-measurable.

Mathematically close (or equivalent) notions can land on either
side of the abyss!
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Thanks!
Questions?

Funded by the Klaus Tschira Foundation, German DFG, and RUB
Bochum.
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