
The non-normal abyss in Kleene’s Computability
Theory

Sam Sanders (jww Dag Normann)

Department of Philosophy II, RUB Bochum, Germany

CiE2023, Batumi, Georgia, July 28, 2023

A logical abyss

In a nutshell, this talk reports on my joint project with Dag Normann (U.

of Oslo) on the computability theory of the uncountable.

Kleene’s higher-order computability theory based on S1-S9 and its
recent lambda calculus formulation due to the authors.

The main message: there are computational operations that are
mathematically extremely close but logically extremely different.

How different? Computable in Kleene’s quantifier ∃2 (≈ Turing
jump) versus computable in Kleene’s ∃3 (≈ SOA) but not in
weaker oracles.

Why? The ‘∃2-side’ deals (exactly) with function classes that have
a built-in approximation-device for function values

A logical abyss

In a nutshell, this talk reports on my joint project with Dag Normann (U.

of Oslo) on the computability theory of the uncountable.

Kleene’s higher-order computability theory based on S1-S9 and its
recent lambda calculus formulation due to the authors.

The main message: there are computational operations that are
mathematically extremely close but logically extremely different.

How different? Computable in Kleene’s quantifier ∃2 (≈ Turing
jump) versus computable in Kleene’s ∃3 (≈ SOA) but not in
weaker oracles.

Why? The ‘∃2-side’ deals (exactly) with function classes that have
a built-in approximation-device for function values

A logical abyss

In a nutshell, this talk reports on my joint project with Dag Normann (U.

of Oslo) on the computability theory of the uncountable.

Kleene’s higher-order computability theory based on S1-S9 and its
recent lambda calculus formulation due to the authors.

The main message: there are computational operations that are
mathematically extremely close but logically extremely different.

How different? Computable in Kleene’s quantifier ∃2 (≈ Turing
jump) versus computable in Kleene’s ∃3 (≈ SOA) but not in
weaker oracles.

Why? The ‘∃2-side’ deals (exactly) with function classes that have
a built-in approximation-device for function values

A logical abyss

In a nutshell, this talk reports on my joint project with Dag Normann (U.

of Oslo) on the computability theory of the uncountable.

Kleene’s higher-order computability theory based on S1-S9 and its
recent lambda calculus formulation due to the authors.

The main message: there are computational operations that are
mathematically extremely close but logically extremely different.

How different? Computable in Kleene’s quantifier ∃2 (≈ Turing
jump) versus computable in Kleene’s ∃3 (≈ SOA) but not in
weaker oracles.

Why? The ‘∃2-side’ deals (exactly) with function classes that have
a built-in approximation-device for function values

A logical abyss

In a nutshell, this talk reports on my joint project with Dag Normann (U.

of Oslo) on the computability theory of the uncountable.

Kleene’s higher-order computability theory based on S1-S9 and its
recent lambda calculus formulation due to the authors.

The main message: there are computational operations that are
mathematically extremely close but logically extremely different.

How different? Computable in Kleene’s quantifier ∃2 (≈ Turing
jump) versus computable in Kleene’s ∃3 (≈ SOA) but not in
weaker oracles.

Why? The ‘∃2-side’ deals (exactly) with function classes that have
a built-in approximation-device for function values

Kleene computability theory Exploring the abyss

Turing

Turing’s ‘machine’ framework (1936): first intuitively convincing
notion of computing with real numbers (Entscheidungsproblem).

Complexity theory studies computation with restricted resources.

Turing machines may or may not produce an output after finitely
many steps: partiality and the Halting problem.

Kleene computability theory Exploring the abyss

Turing

Turing’s ‘machine’ framework (1936): first intuitively convincing
notion of computing with real numbers (Entscheidungsproblem).

Complexity theory studies computation with restricted resources.

Turing machines may or may not produce an output after finitely
many steps: partiality and the Halting problem.

Kleene computability theory Exploring the abyss

Turing

Turing’s ‘machine’ framework (1936): first intuitively convincing
notion of computing with real numbers (Entscheidungsproblem).

Complexity theory studies computation with restricted resources.

Turing machines may or may not produce an output after finitely
many steps: partiality and the Halting problem.

Kleene computability theory Exploring the abyss

Turing

Turing’s ‘machine’ framework (1936): first intuitively convincing
notion of computing with real numbers (Entscheidungsproblem).

Complexity theory studies computation with restricted resources.

Turing machines may or may not produce an output after finitely
many steps: partiality and the Halting problem.

Kleene computability theory Exploring the abyss

Turing and Kleene

Kleene’s S1-S9 are computation schemes that formalise

X is computable in Y

for objects X ,Y of finite type (essentially most of ordinary math).

S1-S9-computability extends Turing computability; the latter is
restricted to X ,Y being real numbers.

S1-S8 merely provide a kind of primitive recursion while S9
hard-codes the recursion theorem in an ad hoc way.

Kleene computability theory Exploring the abyss

Turing and Kleene

Kleene’s S1-S9 are computation schemes that formalise

X is computable in Y

for objects X ,Y of finite type (essentially most of ordinary math).

S1-S9-computability extends Turing computability; the latter is
restricted to X ,Y being real numbers.

S1-S8 merely provide a kind of primitive recursion while S9
hard-codes the recursion theorem in an ad hoc way.

Kleene computability theory Exploring the abyss

Turing and Kleene

Kleene’s S1-S9 are computation schemes that formalise

X is computable in Y

for objects X ,Y of finite type (essentially most of ordinary math).

S1-S9-computability extends Turing computability; the latter is
restricted to X ,Y being real numbers.

S1-S8 merely provide a kind of primitive recursion while S9
hard-codes the recursion theorem in an ad hoc way.

Kleene computability theory Exploring the abyss

Turing and Kleene

Kleene’s S1-S9 are computation schemes that formalise

X is computable in Y

for objects X ,Y of finite type (essentially most of ordinary math).

S1-S9-computability extends Turing computability; the latter is
restricted to X ,Y being real numbers.

S1-S8 merely provide a kind of primitive recursion while S9
hard-codes the recursion theorem in an ad hoc way.

Kleene computability theory Exploring the abyss

For details, consult:

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

A lambda calculus capturing S1-S9

Computation can be based on fixed point operators (Moschovakis).

For Kleene’s S1-S9, the ‘is less partial than’-order is essential:

xσ ⪯σ yσ means: the graph of x is included in the graph of y .

sσ→τ is monotone if: x ⪯σ y implies s(x) ⪯τ s(y) for all xσ, yσ.

For monotone sσ→σ, µxσ.s(x) is the least fixed point of s, i.e.

s(µxσ.s(x)) = µxσ.s(x) and s(y) = y → µxσ.s(x) ⪯σ y ,

Kleene’s S1-S9 is captured by: S1-S8 (primitive recursion) plus
λ-abstraction plus the µσ-operator for all finite types.

Many functionals that ‘occur in nature’ are partial but take total

arguments; our lambda calculus is designed for the study of those.

Normann-Sanders, JLC22, https://arxiv.org/abs/2203.05250.

Kleene computability theory Exploring the abyss

Why study Kleene’s computability theory?

Kleene’s S1-S9 provides a/the most general model of computation
for objects of finite type.

It also has a unique closure property called Gandy selection,
essentially a computational version of the Axiom of Choice.

(∀xσ)(∃y τ)A(x , y) → (∃F σ→τ)︸ ︷︷ ︸
choice function

(∀xσ)A(x ,F (x)).

Under certain restrictions, Gandy selection (and variations) guarantees:

(∀ computable xσ)(∃ computable y τ)A(x , y)︸ ︷︷ ︸
decidable↓

(∃ computable F σ→τ)(∀ computable xσ)A(x ,F (x)).

Kleene computability theory Exploring the abyss

Why study Kleene’s computability theory?

Kleene’s S1-S9 provides a/the most general model of computation
for objects of finite type.

It also has a unique closure property called Gandy selection,
essentially a computational version of the Axiom of Choice.

(∀xσ)(∃y τ)A(x , y) → (∃F σ→τ)︸ ︷︷ ︸
choice function

(∀xσ)A(x ,F (x)).

Under certain restrictions, Gandy selection (and variations) guarantees:

(∀ computable xσ)(∃ computable y τ)A(x , y)︸ ︷︷ ︸
decidable↓

(∃ computable F σ→τ)(∀ computable xσ)A(x ,F (x)).

Kleene computability theory Exploring the abyss

Why study Kleene’s computability theory?

Kleene’s S1-S9 provides a/the most general model of computation
for objects of finite type.

It also has a unique closure property called Gandy selection,
essentially a computational version of the Axiom of Choice.

(∀xσ)(∃y τ)A(x , y) → (∃F σ→τ)︸ ︷︷ ︸
choice function

(∀xσ)A(x ,F (x)).

Under certain restrictions, Gandy selection (and variations) guarantees:

(∀ computable xσ)(∃ computable y τ)A(x , y)︸ ︷︷ ︸
decidable↓

(∃ computable F σ→τ)(∀ computable xσ)A(x ,F (x)).

Kleene computability theory Exploring the abyss

Why study Kleene’s computability theory?

Kleene’s S1-S9 provides a/the most general model of computation
for objects of finite type.

It also has a unique closure property called Gandy selection,
essentially a computational version of the Axiom of Choice.

(∀xσ)(∃y τ)A(x , y) → (∃F σ→τ)︸ ︷︷ ︸
choice function

(∀xσ)A(x ,F (x)).

Under certain restrictions, Gandy selection (and variations) guarantees:

(∀ computable xσ)(∃ computable y τ)A(x , y)︸ ︷︷ ︸
decidable↓

(∃ computable F σ→τ)(∀ computable xσ)A(x ,F (x)).

Kleene computability theory Exploring the abyss

Why study Kleene’s computability theory?

Kleene’s S1-S9 provides a/the most general model of computation
for objects of finite type.

It also has a unique closure property called Gandy selection,
essentially a computational version of the Axiom of Choice.

(∀xσ)(∃y τ)A(x , y) → (∃F σ→τ)︸ ︷︷ ︸
choice function

(∀xσ)A(x ,F (x)).

Under certain restrictions, Gandy selection (and variations) guarantees:

(∀ computable xσ)(∃ computable y τ)A(x , y)︸ ︷︷ ︸
decidable↓

(∃ computable F σ→τ)(∀ computable xσ)A(x ,F (x)).

Kleene computability theory Exploring the abyss

Why study Kleene’s computability theory?

Kleene’s S1-S9 provides a/the most general model of computation
for objects of finite type.

It also has a unique closure property called Gandy selection,
essentially a computational version of the Axiom of Choice.

(∀xσ)(∃y τ)A(x , y) → (∃F σ→τ)︸ ︷︷ ︸
choice function

(∀xσ)A(x ,F (x)).

Under certain restrictions, Gandy selection (and variations) guarantees:

(∀ computable xσ)(∃ computable y τ)A(x , y)︸ ︷︷ ︸
decidable

↓

(∃ computable F σ→τ)(∀ computable xσ)A(x ,F (x)).

Kleene computability theory Exploring the abyss

Why study Kleene’s computability theory?

Kleene’s S1-S9 provides a/the most general model of computation
for objects of finite type.

It also has a unique closure property called Gandy selection,
essentially a computational version of the Axiom of Choice.

(∀xσ)(∃y τ)A(x , y) → (∃F σ→τ)︸ ︷︷ ︸
choice function

(∀xσ)A(x ,F (x)).

Under certain restrictions, Gandy selection (and variations) guarantees:

(∀ computable xσ)(∃ computable y τ)A(x , y)︸ ︷︷ ︸
decidable↓

(∃ computable F σ→τ)(∀ computable xσ)A(x ,F (x)).

Kleene computability theory Exploring the abyss

Some oracles

The Halting problem/Turing jump has the following counterpart:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

Kleene’s quantifier ∃2 is discontinuous at f = 11

Similarly: S2k decides the truth of φ ∈ Π1
k (Sieg-Feferman).

The ‘hyperjump’ functional S21 is called the Suslin functional.

Everything we do is computable in Kleene’s quantifier ∃3:

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

which yields full second-order arithmetic.

Historically, the focus of Kleene’s computability theory was normal
functionals (which compute ∃2 or ∃3). (Hilbert-Bernays, Tait)

Kleene computability theory Exploring the abyss

Some oracles

The Halting problem/Turing jump has the following counterpart:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

Kleene’s quantifier ∃2 is discontinuous at f = 11

Similarly: S2k decides the truth of φ ∈ Π1
k (Sieg-Feferman).

The ‘hyperjump’ functional S21 is called the Suslin functional.

Everything we do is computable in Kleene’s quantifier ∃3:

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

which yields full second-order arithmetic.

Historically, the focus of Kleene’s computability theory was normal
functionals (which compute ∃2 or ∃3). (Hilbert-Bernays, Tait)

Kleene computability theory Exploring the abyss

Some oracles

The Halting problem/Turing jump has the following counterpart:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

Kleene’s quantifier ∃2 is discontinuous at f = 11

Similarly: S2k decides the truth of φ ∈ Π1
k (Sieg-Feferman).

The ‘hyperjump’ functional S21 is called the Suslin functional.

Everything we do is computable in Kleene’s quantifier ∃3:

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

which yields full second-order arithmetic.

Historically, the focus of Kleene’s computability theory was normal
functionals (which compute ∃2 or ∃3). (Hilbert-Bernays, Tait)

Kleene computability theory Exploring the abyss

Some oracles

The Halting problem/Turing jump has the following counterpart:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

Kleene’s quantifier ∃2 is discontinuous at f = 11

Similarly: S2k decides the truth of φ ∈ Π1
k (Sieg-Feferman).

The ‘hyperjump’ functional S21 is called the Suslin functional.

Everything we do is computable in Kleene’s quantifier ∃3:

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

which yields full second-order arithmetic.

Historically, the focus of Kleene’s computability theory was normal
functionals (which compute ∃2 or ∃3). (Hilbert-Bernays, Tait)

Kleene computability theory Exploring the abyss

Some oracles

The Halting problem/Turing jump has the following counterpart:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

Kleene’s quantifier ∃2 is discontinuous at f = 11

Similarly: S2k decides the truth of φ ∈ Π1
k (Sieg-Feferman).

The ‘hyperjump’ functional S21 is called the Suslin functional.

Everything we do is computable in Kleene’s quantifier ∃3:

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

which yields full second-order arithmetic.

Historically, the focus of Kleene’s computability theory was normal
functionals (which compute ∃2 or ∃3). (Hilbert-Bernays, Tait)

Kleene computability theory Exploring the abyss

Some oracles

The Halting problem/Turing jump has the following counterpart:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

Kleene’s quantifier ∃2 is discontinuous at f = 11

Similarly: S2k decides the truth of φ ∈ Π1
k (Sieg-Feferman).

The ‘hyperjump’ functional S21 is called the Suslin functional.

Everything we do is computable in Kleene’s quantifier ∃3:

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

which yields full second-order arithmetic.

Historically, the focus of Kleene’s computability theory was normal
functionals (which compute ∃2 or ∃3). (Hilbert-Bernays, Tait)

Kleene computability theory Exploring the abyss

Some oracles

The Halting problem/Turing jump has the following counterpart:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

Kleene’s quantifier ∃2 is discontinuous at f = 11

Similarly: S2k decides the truth of φ ∈ Π1
k (Sieg-Feferman).

The ‘hyperjump’ functional S21 is called the Suslin functional.

Everything we do is computable in Kleene’s quantifier ∃3:

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

which yields full second-order arithmetic.

Historically, the focus of Kleene’s computability theory was normal
functionals (which compute ∃2 or ∃3).

(Hilbert-Bernays, Tait)

Kleene computability theory Exploring the abyss

Some oracles

The Halting problem/Turing jump has the following counterpart:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

Kleene’s quantifier ∃2 is discontinuous at f = 11

Similarly: S2k decides the truth of φ ∈ Π1
k (Sieg-Feferman).

The ‘hyperjump’ functional S21 is called the Suslin functional.

Everything we do is computable in Kleene’s quantifier ∃3:

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

which yields full second-order arithmetic.

Historically, the focus of Kleene’s computability theory was normal
functionals (which compute ∃2 or ∃3). (Hilbert-Bernays, Tait)

Kleene computability theory Exploring the abyss

The non-normal abyss

Kleene’s quantifiers ∃2 and ∃3:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

Huge abyss between ∃2 and ∃3 in terms of computational strength.

This talk:

(a) we identify basic (non-normal) functionals that are computable in ∃2

(b) and for which slight variations are computable in ∃3 but not
computable in any functional S2k (which decides Π1

k -formulas).

Item (a) deals (exactly) with definitions that have a built-in
approximation-device for function values.

Kleene computability theory Exploring the abyss

The non-normal abyss

Kleene’s quantifiers ∃2 and ∃3:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

Huge abyss between ∃2 and ∃3 in terms of computational strength.

This talk:

(a) we identify basic (non-normal) functionals that are computable in ∃2

(b) and for which slight variations are computable in ∃3 but not
computable in any functional S2k (which decides Π1

k -formulas).

Item (a) deals (exactly) with definitions that have a built-in
approximation-device for function values.

Kleene computability theory Exploring the abyss

The non-normal abyss

Kleene’s quantifiers ∃2 and ∃3:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

Huge abyss between ∃2 and ∃3 in terms of computational strength.

This talk:

(a) we identify basic (non-normal) functionals that are computable in ∃2

(b) and for which slight variations are computable in ∃3 but not
computable in any functional S2k (which decides Π1

k -formulas).

Item (a) deals (exactly) with definitions that have a built-in
approximation-device for function values.

Kleene computability theory Exploring the abyss

The non-normal abyss

Kleene’s quantifiers ∃2 and ∃3:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

Huge abyss between ∃2 and ∃3 in terms of computational strength.

This talk:

(a) we identify basic (non-normal) functionals that are computable in ∃2

(b) and for which slight variations are computable in ∃3 but not
computable in any functional S2k (which decides Π1

k -formulas).

Item (a) deals (exactly) with definitions that have a built-in
approximation-device for function values.

Kleene computability theory Exploring the abyss

The non-normal abyss

Kleene’s quantifiers ∃2 and ∃3:

(∀f : N → N)(∃2(f) = 0 ↔ (∃n ∈ N)(f (n) = 0)).

(∀Y : NN → N)(∃3(Y) = 0 ↔ (∃f ∈ NN)(Y (f) = 0)).

Huge abyss between ∃2 and ∃3 in terms of computational strength.

This talk:

(a) we identify basic (non-normal) functionals that are computable in ∃2

(b) and for which slight variations are computable in ∃3 but not
computable in any functional S2k (which decides Π1

k -formulas).

Item (a) deals (exactly) with definitions that have a built-in
approximation-device for function values.

Kleene computability theory Exploring the abyss

A regular abyss just beyond the continuous

We always study f : [0, 1] → R for well-known function classes.

f is regulated (aka regular) if the left and right limits f (x−) and
f (x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e.
f (x) = f (x+) everywhere.

∃2 computes supx∈[p,q] f (x) for any cadlag f : [0, 1] → R and
p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) for any regulated f : [0, 1] → R and
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f (x) = f (x−) allows us to approximate f (x)

given only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

A regular abyss just beyond the continuous

We always study f : [0, 1] → R for well-known function classes.

f is regulated (aka regular) if the left and right limits f (x−) and
f (x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e.
f (x) = f (x+) everywhere.

∃2 computes supx∈[p,q] f (x) for any cadlag f : [0, 1] → R and
p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) for any regulated f : [0, 1] → R and
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f (x) = f (x−) allows us to approximate f (x)

given only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

A regular abyss just beyond the continuous

We always study f : [0, 1] → R for well-known function classes.

f is regulated (aka regular) if the left and right limits f (x−) and
f (x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e.
f (x) = f (x+) everywhere.

∃2 computes supx∈[p,q] f (x) for any cadlag f : [0, 1] → R and
p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) for any regulated f : [0, 1] → R and
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f (x) = f (x−) allows us to approximate f (x)

given only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

A regular abyss just beyond the continuous

We always study f : [0, 1] → R for well-known function classes.

f is regulated (aka regular) if the left and right limits f (x−) and
f (x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e.
f (x) = f (x+) everywhere.

Both have (at most) countably many points of discontinuity and a
rich history (PDE, probability, Bourbaki, Scheeffer, . . .).

∃2 computes supx∈[p,q] f (x) for any cadlag f : [0, 1] → R and
p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) for any regulated f : [0, 1] → R and
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f (x) = f (x−) allows us to approximate f (x)

given only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

A regular abyss just beyond the continuous

We always study f : [0, 1] → R for well-known function classes.

f is regulated (aka regular) if the left and right limits f (x−) and
f (x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e.
f (x) = f (x+) everywhere.

∃2 computes supx∈[p,q] f (x) for any cadlag f : [0, 1] → R and
p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) for any regulated f : [0, 1] → R and
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f (x) = f (x−) allows us to approximate f (x)

given only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

A regular abyss just beyond the continuous

We always study f : [0, 1] → R for well-known function classes.

f is regulated (aka regular) if the left and right limits f (x−) and
f (x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e.
f (x) = f (x+) everywhere.

∃2 computes supx∈[p,q] f (x) for any cadlag f : [0, 1] → R and
p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) for any regulated f : [0, 1] → R and
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f (x) = f (x−) allows us to approximate f (x)

given only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

A regular abyss just beyond the continuous

We always study f : [0, 1] → R for well-known function classes.

f is regulated (aka regular) if the left and right limits f (x−) and
f (x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e.
f (x) = f (x+) everywhere.

∃2 computes supx∈[p,q] f (x) for any cadlag f : [0, 1] → R and
p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) for any regulated f : [0, 1] → R and
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f (x) = f (x−) allows us to approximate f (x)

given only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

A regular abyss just beyond the continuous

We always study f : [0, 1] → R for well-known function classes.

f is regulated (aka regular) if the left and right limits f (x−) and
f (x+) exist everywhere.

f is cadlag if it is regulated and right-continuous, i.e.
f (x) = f (x+) everywhere.

∃2 computes supx∈[p,q] f (x) for any cadlag f : [0, 1] → R and
p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) for any regulated f : [0, 1] → R and
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for regulated functions (holds for any k).

NB: right-continuity as in f (x) = f (x−) allows us to approximate f (x)

given only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

An abyss among the Baire functions

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

∃2 computes supx∈[p,q] f (x) given Baire 1 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of continuous functions.

∃3 computes supx∈[p,q] f (x) given Baire 2 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of Baire 1 functions.

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for Baire 2 functions (holds for any k).

Borderline: the Suslin functional S21 computes supx∈[p,q] f (x) given
effectively Baire 2 f : [0, 1] → [0, 1], p, q ∈ [0, 1], and the
associated double sequence of continuous functions.

Kleene computability theory Exploring the abyss

An abyss among the Baire functions

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

∃2 computes supx∈[p,q] f (x) given Baire 1 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of continuous functions.

∃3 computes supx∈[p,q] f (x) given Baire 2 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of Baire 1 functions.

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for Baire 2 functions (holds for any k).

Borderline: the Suslin functional S21 computes supx∈[p,q] f (x) given
effectively Baire 2 f : [0, 1] → [0, 1], p, q ∈ [0, 1], and the
associated double sequence of continuous functions.

Kleene computability theory Exploring the abyss

An abyss among the Baire functions

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

∃2 computes supx∈[p,q] f (x) given Baire 1 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of continuous functions.

∃3 computes supx∈[p,q] f (x) given Baire 2 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of Baire 1 functions.

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for Baire 2 functions (holds for any k).

Borderline: the Suslin functional S21 computes supx∈[p,q] f (x) given
effectively Baire 2 f : [0, 1] → [0, 1], p, q ∈ [0, 1], and the
associated double sequence of continuous functions.

Kleene computability theory Exploring the abyss

An abyss among the Baire functions

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

Baire (1905) notes that Baire 2 functions can be represented as
iterated limits.

∃2 computes supx∈[p,q] f (x) given Baire 1 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of continuous functions.

∃3 computes supx∈[p,q] f (x) given Baire 2 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of Baire 1 functions.

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for Baire 2 functions (holds for any k).

Borderline: the Suslin functional S21 computes supx∈[p,q] f (x) given
effectively Baire 2 f : [0, 1] → [0, 1], p, q ∈ [0, 1], and the
associated double sequence of continuous functions.

Kleene computability theory Exploring the abyss

An abyss among the Baire functions

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

∃2 computes supx∈[p,q] f (x) given Baire 1 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of continuous functions.

∃3 computes supx∈[p,q] f (x) given Baire 2 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of Baire 1 functions.

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for Baire 2 functions (holds for any k).

Borderline: the Suslin functional S21 computes supx∈[p,q] f (x) given
effectively Baire 2 f : [0, 1] → [0, 1], p, q ∈ [0, 1], and the
associated double sequence of continuous functions.

Kleene computability theory Exploring the abyss

An abyss among the Baire functions

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

∃2 computes supx∈[p,q] f (x) given Baire 1 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of continuous functions.

∃3 computes supx∈[p,q] f (x) given Baire 2 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of Baire 1 functions.

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for Baire 2 functions (holds for any k).

Borderline: the Suslin functional S21 computes supx∈[p,q] f (x) given
effectively Baire 2 f : [0, 1] → [0, 1], p, q ∈ [0, 1], and the
associated double sequence of continuous functions.

Kleene computability theory Exploring the abyss

An abyss among the Baire functions

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

∃2 computes supx∈[p,q] f (x) given Baire 1 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of continuous functions.

∃3 computes supx∈[p,q] f (x) given Baire 2 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of Baire 1 functions.

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for Baire 2 functions (holds for any k).

Borderline: the Suslin functional S21 computes supx∈[p,q] f (x) given
effectively Baire 2 f : [0, 1] → [0, 1], p, q ∈ [0, 1], and the
associated double sequence of continuous functions.

Kleene computability theory Exploring the abyss

An abyss among the Baire functions

Baire 1 means: pointwise limit of sequence of continuous functions.

Baire 2 means: pointwise limit of sequence of Baire 1 functions.

Effectively Baire 2 means: iterated limit of double sequence of
continuous functions (≈ second-order codes for Baire 2).

∃2 computes supx∈[p,q] f (x) given Baire 1 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of continuous functions.

∃3 computes supx∈[p,q] f (x) given Baire 2 f : [0, 1] → [0, 1],
p, q ∈ [0, 1], and the associated sequence of Baire 1 functions.

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for Baire 2 functions (holds for any k).

Borderline: the Suslin functional S21 computes supx∈[p,q] f (x) given
effectively Baire 2 f : [0, 1] → [0, 1], p, q ∈ [0, 1], and the
associated double sequence of continuous functions.

Kleene computability theory Exploring the abyss

Out there: quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Some properties:

Studied by Baire, Volterra, Hankel, . . . starting ca 1870.

Cliquish = continuity points are dense = pointwise discontinuous.

There are 2|R| non-measurable quasi-cont. functions and 2|R|

non-Borel measurable quasi-cont. functions.

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

Kleene computability theory Exploring the abyss

Out there: quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Some properties:

Studied by Baire, Volterra, Hankel, . . . starting ca 1870.

Cliquish = continuity points are dense = pointwise discontinuous.

There are 2|R| non-measurable quasi-cont. functions and 2|R|

non-Borel measurable quasi-cont. functions.

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

Kleene computability theory Exploring the abyss

Out there: quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Some properties:

Studied by Baire, Volterra, Hankel, . . . starting ca 1870.

Cliquish = continuity points are dense = pointwise discontinuous.

There are 2|R| non-measurable quasi-cont. functions and 2|R|

non-Borel measurable quasi-cont. functions.

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

Kleene computability theory Exploring the abyss

Out there: quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Some properties:

Studied by Baire, Volterra, Hankel, . . . starting ca 1870.

Cliquish = continuity points are dense = pointwise discontinuous.

There are 2|R| non-measurable quasi-cont. functions and 2|R|

non-Borel measurable quasi-cont. functions.

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

Kleene computability theory Exploring the abyss

Out there: quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Some properties:

Studied by Baire, Volterra, Hankel, . . . starting ca 1870.

Cliquish = continuity points are dense = pointwise discontinuous.

There are 2|R| non-measurable quasi-cont. functions and 2|R|

non-Borel measurable quasi-cont. functions.

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

Kleene computability theory Exploring the abyss

Out there: quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Some properties:

Studied by Baire, Volterra, Hankel, . . . starting ca 1870.

Cliquish = continuity points are dense = pointwise discontinuous.

There are 2|R| non-measurable quasi-cont. functions and 2|R|

non-Borel measurable quasi-cont. functions.

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

Kleene computability theory Exploring the abyss

Out there: quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Some properties:

Studied by Baire, Volterra, Hankel, . . . starting ca 1870.

Cliquish = continuity points are dense = pointwise discontinuous.

There are 2|R| non-measurable quasi-cont. functions and 2|R|

non-Borel measurable quasi-cont. functions.

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

Kleene computability theory Exploring the abyss

Quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

∃2 computes supx∈[p,q] f (x) given quasi-continuous
f : [0, 1] → [0, 1], p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) given cliquish f : [0, 1] → [0, 1],
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for cliquish functions (holds for any k).

Note that quasi-continuity allows us to approximate f (x) given
only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

Quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

∃2 computes supx∈[p,q] f (x) given quasi-continuous
f : [0, 1] → [0, 1], p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) given cliquish f : [0, 1] → [0, 1],
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for cliquish functions (holds for any k).

Note that quasi-continuity allows us to approximate f (x) given
only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

Quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

∃2 computes supx∈[p,q] f (x) given quasi-continuous
f : [0, 1] → [0, 1], p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) given cliquish f : [0, 1] → [0, 1],
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for cliquish functions (holds for any k).

Note that quasi-continuity allows us to approximate f (x) given
only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

Quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

∃2 computes supx∈[p,q] f (x) given quasi-continuous
f : [0, 1] → [0, 1], p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) given cliquish f : [0, 1] → [0, 1],
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for cliquish functions (holds for any k).

Note that quasi-continuity allows us to approximate f (x) given
only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

Quasi-continuity and around

f is quasi-continuous if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) with (∀y ∈ (a, b))(|f (x)− f (y)| < ϵ).

f is cliquish if for all ϵ > 0,N ∈ N, x ∈ [0, 1], there is
(a, b) ⊂ B(x , 1

2N
) such that (∀y , z ∈ (a, b))(|f (z)− f (y)| < ϵ).

Closely related: every cliquish function is the sum of two
quasi-continuous functions (on the reals).

∃2 computes supx∈[p,q] f (x) given quasi-continuous
f : [0, 1] → [0, 1], p, q ∈ [0, 1].

∃3 computes supx∈[p,q] f (x) given cliquish f : [0, 1] → [0, 1],
p, q ∈ [0, 1].

Sharp: the functional S2k , which decides Π1
k -formulas, cannot in

general compute suprema for cliquish functions (holds for any k).

Note that quasi-continuity allows us to approximate f (x) given
only f (q) for all q ∈ Q ∩ [0, 1].

Kleene computability theory Exploring the abyss

Similar theorems

The supremum principle is not special; the same abyss is observed
for other basic properties.

Coverings lemmas (Cousin, Vitali, Heine-Borel, . . .) for
coverings ∪x∈[0,1]B(x ,Ψ(x)) and Ψ : [0, 1] → R+.

Finding an RM-code for the set of continuity points Cf .

Deciding whether f is continuous at a given real x ∈ [0, 1].

Jordan decomposition theorem.

For a Riemann integrable f : [0, 1] → [0, 1] with∫ 1
0 f (x)dx = 0, find x ∈ [0, 1] such that f (x) = 0.

. . .

Finally, how do we prove our negative results?

Kleene computability theory Exploring the abyss

Similar theorems

The supremum principle is not special; the same abyss is observed
for other basic properties.

Coverings lemmas (Cousin, Vitali, Heine-Borel, . . .) for
coverings ∪x∈[0,1]B(x ,Ψ(x)) and Ψ : [0, 1] → R+.

Finding an RM-code for the set of continuity points Cf .

Deciding whether f is continuous at a given real x ∈ [0, 1].

Jordan decomposition theorem.

For a Riemann integrable f : [0, 1] → [0, 1] with∫ 1
0 f (x)dx = 0, find x ∈ [0, 1] such that f (x) = 0.

. . .

Finally, how do we prove our negative results?

Kleene computability theory Exploring the abyss

Similar theorems

The supremum principle is not special; the same abyss is observed
for other basic properties.

Coverings lemmas (Cousin, Vitali, Heine-Borel, . . .) for
coverings ∪x∈[0,1]B(x ,Ψ(x)) and Ψ : [0, 1] → R+.

Finding an RM-code for the set of continuity points Cf .

Deciding whether f is continuous at a given real x ∈ [0, 1].

Jordan decomposition theorem.

For a Riemann integrable f : [0, 1] → [0, 1] with∫ 1
0 f (x)dx = 0, find x ∈ [0, 1] such that f (x) = 0.

. . .

Finally, how do we prove our negative results?

Kleene computability theory Exploring the abyss

Similar theorems

The supremum principle is not special; the same abyss is observed
for other basic properties.

Coverings lemmas (Cousin, Vitali, Heine-Borel, . . .) for
coverings ∪x∈[0,1]B(x ,Ψ(x)) and Ψ : [0, 1] → R+.

Finding an RM-code for the set of continuity points Cf .

Deciding whether f is continuous at a given real x ∈ [0, 1].

Jordan decomposition theorem.

For a Riemann integrable f : [0, 1] → [0, 1] with∫ 1
0 f (x)dx = 0, find x ∈ [0, 1] such that f (x) = 0.

. . .

Finally, how do we prove our negative results?

Kleene computability theory Exploring the abyss

Similar theorems

The supremum principle is not special; the same abyss is observed
for other basic properties.

Coverings lemmas (Cousin, Vitali, Heine-Borel, . . .) for
coverings ∪x∈[0,1]B(x ,Ψ(x)) and Ψ : [0, 1] → R+.

Finding an RM-code for the set of continuity points Cf .

Deciding whether f is continuous at a given real x ∈ [0, 1].

Jordan decomposition theorem.

For a Riemann integrable f : [0, 1] → [0, 1] with∫ 1
0 f (x)dx = 0, find x ∈ [0, 1] such that f (x) = 0.

. . .

Finally, how do we prove our negative results?

Kleene computability theory Exploring the abyss

Similar theorems

The supremum principle is not special; the same abyss is observed
for other basic properties.

Coverings lemmas (Cousin, Vitali, Heine-Borel, . . .) for
coverings ∪x∈[0,1]B(x ,Ψ(x)) and Ψ : [0, 1] → R+.

Finding an RM-code for the set of continuity points Cf .

Deciding whether f is continuous at a given real x ∈ [0, 1].

Jordan decomposition theorem.

For a Riemann integrable f : [0, 1] → [0, 1] with∫ 1
0 f (x)dx = 0, find x ∈ [0, 1] such that f (x) = 0.

. . .

Finally, how do we prove our negative results?

Kleene computability theory Exploring the abyss

Similar theorems

The supremum principle is not special; the same abyss is observed
for other basic properties.

Coverings lemmas (Cousin, Vitali, Heine-Borel, . . .) for
coverings ∪x∈[0,1]B(x ,Ψ(x)) and Ψ : [0, 1] → R+.

Finding an RM-code for the set of continuity points Cf .

Deciding whether f is continuous at a given real x ∈ [0, 1].

Jordan decomposition theorem.

For a Riemann integrable f : [0, 1] → [0, 1] with∫ 1
0 f (x)dx = 0, find x ∈ [0, 1] such that f (x) = 0.

. . .

Finally, how do we prove our negative results?

Kleene computability theory Exploring the abyss

The uncountability of R

Cantor’s first set theory paper (1874): uncountability of R.

Cantor realisers (CR) perform the following associated operation:

on input a countable set X ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y) where Y : R → N is
assumed to be injective (or even bijective) on X .

∃3 can compute a CR, but S2k cannot compute a CR (hold for any k).

Kleene computability theory Exploring the abyss

The uncountability of R

Cantor’s first set theory paper (1874): uncountability of R.

Cantor realisers (CR) perform the following associated operation:

on input a countable set X ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y) where Y : R → N is
assumed to be injective (or even bijective) on X .

∃3 can compute a CR, but S2k cannot compute a CR (hold for any k).

Kleene computability theory Exploring the abyss

The uncountability of R

Cantor’s first set theory paper (1874): uncountability of R.

Cantor realisers (CR) perform the following associated operation:

on input a countable set X ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y) where Y : R → N is
assumed to be injective (or even bijective) on X .

∃3 can compute a CR, but S2k cannot compute a CR (hold for any k).

Kleene computability theory Exploring the abyss

The uncountability of R

Cantor’s first set theory paper (1874): uncountability of R.

Cantor realisers (CR) perform the following associated operation:

on input a countable set X ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y) where Y : R → N is
assumed to be injective (or even bijective) on X .

∃3 can compute a CR, but S2k cannot compute a CR (hold for any k).

Kleene computability theory Exploring the abyss

The uncountability of R

Cantor’s first set theory paper (1874): uncountability of R.

Cantor realisers (CR) perform the following associated operation:

on input a countable set X ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y) where Y : R → N is
assumed to be injective (or even bijective) on X .

∃3 can compute a CR, but S2k cannot compute a CR (hold for any k).

Kleene computability theory Exploring the abyss

Cantor realisers

Cantor realisers (CR) perform the following operation:

on input a countable set A ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y) where Y : R → N is
injective (or even bijective) on X .

∃3 can compute a CR, but no S2k can compute a CR.

Our negative results are obtained by computing a CR from the
functionals at hand using:

f (x) :=

{
1

2Y (x)+1 if x ∈ X

0 otherwise

which is BV , semi-continuous, cliquish, . . . and is found in the
literature.

Kleene computability theory Exploring the abyss

Cantor realisers

Cantor realisers (CR) perform the following operation:

on input a countable set A ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y) where Y : R → N is
injective (or even bijective) on X .

∃3 can compute a CR, but no S2k can compute a CR.

Our negative results are obtained by computing a CR from the
functionals at hand

using:

f (x) :=

{
1

2Y (x)+1 if x ∈ X

0 otherwise

which is BV , semi-continuous, cliquish, . . . and is found in the
literature.

Kleene computability theory Exploring the abyss

Cantor realisers

Cantor realisers (CR) perform the following operation:

on input a countable set A ⊂ R, output an element y ∈ R \ X .

A countable set X ⊂ R is a pair (X ,Y) where Y : R → N is
injective (or even bijective) on X .

∃3 can compute a CR, but no S2k can compute a CR.

Our negative results are obtained by computing a CR from the
functionals at hand using:

f (x) :=

{
1

2Y (x)+1 if x ∈ X

0 otherwise

which is BV , semi-continuous, cliquish, . . . and is found in the
literature.

Kleene computability theory Exploring the abyss

The abyss and its origin

The abyss:

(a) there are basic (non-normal) functionals that are computable in ∃2.

(b) and for which slight variations are computable in ∃3, but not
computable in S2k .

Its origin: item (a) deals exactly with definitions that have a
built-in approximation-device for function values.

Like item (a): Baire 1, effectively Baire n, normalised bounded

variation, regulated such that f (x) = f (x−)+f (x+)
2 everywhere.

Like item (b): simple continuity, semi-continuity, fragmented,
bounded variation, Baire 1∗, Fσ-measurable.

Mathematically close (or equivalent) notions can land on either
side of the abyss!

Kleene computability theory Exploring the abyss

The abyss and its origin

The abyss:

(a) there are basic (non-normal) functionals that are computable in ∃2.

(b) and for which slight variations are computable in ∃3, but not
computable in S2k .

Its origin: item (a) deals exactly with definitions that have a
built-in approximation-device for function values.

Like item (a): Baire 1, effectively Baire n, normalised bounded

variation, regulated such that f (x) = f (x−)+f (x+)
2 everywhere.

Like item (b): simple continuity, semi-continuity, fragmented,
bounded variation, Baire 1∗, Fσ-measurable.

Mathematically close (or equivalent) notions can land on either
side of the abyss!

Kleene computability theory Exploring the abyss

The abyss and its origin

The abyss:

(a) there are basic (non-normal) functionals that are computable in ∃2.

(b) and for which slight variations are computable in ∃3, but not
computable in S2k .

Its origin: item (a) deals exactly with definitions that have a
built-in approximation-device for function values.

Like item (a): Baire 1, effectively Baire n, normalised bounded

variation, regulated such that f (x) = f (x−)+f (x+)
2 everywhere.

Like item (b): simple continuity, semi-continuity, fragmented,
bounded variation, Baire 1∗, Fσ-measurable.

Mathematically close (or equivalent) notions can land on either
side of the abyss!

Kleene computability theory Exploring the abyss

The abyss and its origin

The abyss:

(a) there are basic (non-normal) functionals that are computable in ∃2.

(b) and for which slight variations are computable in ∃3, but not
computable in S2k .

Its origin: item (a) deals exactly with definitions that have a
built-in approximation-device for function values.

Like item (a): Baire 1, effectively Baire n, normalised bounded

variation, regulated such that f (x) = f (x−)+f (x+)
2 everywhere.

Like item (b): simple continuity, semi-continuity, fragmented,
bounded variation, Baire 1∗, Fσ-measurable.

Mathematically close (or equivalent) notions can land on either
side of the abyss!

Kleene computability theory Exploring the abyss

The abyss and its origin

The abyss:

(a) there are basic (non-normal) functionals that are computable in ∃2.

(b) and for which slight variations are computable in ∃3, but not
computable in S2k .

Its origin: item (a) deals exactly with definitions that have a
built-in approximation-device for function values.

Like item (a): Baire 1, effectively Baire n, normalised bounded

variation, regulated such that f (x) = f (x−)+f (x+)
2 everywhere.

Like item (b): simple continuity, semi-continuity, fragmented,
bounded variation, Baire 1∗, Fσ-measurable.

Mathematically close (or equivalent) notions can land on either
side of the abyss!

Kleene computability theory Exploring the abyss

Thanks!
Questions?

Funded by the Klaus Tschira Foundation, German DFG, and RUB
Bochum.

	Kleene computability theory
	

	Exploring the abyss
	

