
Extending Wagner’s Hierarchy to Deterministic
Visibly Pushdown Automata

Victor Selivanov 1, 2

1Saint-Petersburg State University

2A.P. Ershov Institute of Informatics Systems, Novosibirsk

CiE-2023, Batumi (Georgia), July 25

Introduction

K. Wagner [16] characterized the structure of regular ω-languages
under the continuous reducibility (known also as Wadge
reducibility). Later, some results from [16] were extended to
languages recognized by more complicated computing devices (see
e.g. [4, 11, 5] and references therein for an extensive study of, in
particular, context-free ω-languages). In this wider context, some
important properties of the Wagner hierarchy (e.g., the decidability
of levels) usually fail.

Motivated by a related study in descriptive set theory,
computability and complexity, we extended in [13, 15] the Wagner
theory from the regular sets to the regular k-partitions
A : Σω → {0, . . . , k− 1} = k̄ of the set Σω of ω-words over a finite
alphabet Σ that essentially coincide with the k-tuples
(A0, . . . , Ak−1) of pairwise disjoint regular sets satisfying
A0 ∪ · · · ∪Ak−1 = Σω (note that the ω-languages are in a bijective
correspondence with the 2-partitions of Σω).

Introduction

K. Wagner [16] characterized the structure of regular ω-languages
under the continuous reducibility (known also as Wadge
reducibility). Later, some results from [16] were extended to
languages recognized by more complicated computing devices (see
e.g. [4, 11, 5] and references therein for an extensive study of, in
particular, context-free ω-languages). In this wider context, some
important properties of the Wagner hierarchy (e.g., the decidability
of levels) usually fail.

Motivated by a related study in descriptive set theory,
computability and complexity, we extended in [13, 15] the Wagner
theory from the regular sets to the regular k-partitions
A : Σω → {0, . . . , k− 1} = k̄ of the set Σω of ω-words over a finite
alphabet Σ that essentially coincide with the k-tuples
(A0, . . . , Ak−1) of pairwise disjoint regular sets satisfying
A0 ∪ · · · ∪Ak−1 = Σω (note that the ω-languages are in a bijective
correspondence with the 2-partitions of Σω).

The extension from sets to k-partitions for k > 2 is non-trivial. It
required to develop a machinery of iterated labeled trees and of the
FH of k-partitions (partially systematized in [15]) which turned out
crucial for the subsequent partial extension of the Wadge theory to
k-partitions [14] and, as a concluding step, to Q-partitions for
arbitrary better quasiorder Q [6].

Among many natural extensions of regular ω-languages, the class of
visibly pushdown ω-languages (also known as languages recognized
by input-driven automata) [8, 3, 1, 2] and its subclasses seem
especially interesting because they preserve many important
properties of regular ω-languages. An investigation of Wagner’s
hierarchy for this class was initiated in [10] where the hierarchy was
successfully extended to the class of languages of well nested words.

The extension from sets to k-partitions for k > 2 is non-trivial. It
required to develop a machinery of iterated labeled trees and of the
FH of k-partitions (partially systematized in [15]) which turned out
crucial for the subsequent partial extension of the Wadge theory to
k-partitions [14] and, as a concluding step, to Q-partitions for
arbitrary better quasiorder Q [6].

Among many natural extensions of regular ω-languages, the class of
visibly pushdown ω-languages (also known as languages recognized
by input-driven automata) [8, 3, 1, 2] and its subclasses seem
especially interesting because they preserve many important
properties of regular ω-languages. An investigation of Wagner’s
hierarchy for this class was initiated in [10] where the hierarchy was
successfully extended to the class of languages of well nested words.

0 1

0

1 0

1

0 1

1

0

0

1

1

0

1

0

1

0

0

1

0

..
.

..
.

..
.

An initial segment of (FT2 ;≤h).

0 1 0 2 1 2

0 1 2

. .

0

1 0

1

2

0

0

2

2

1

1

2

0 1 2

2

0

0

2

1

0

0

1

2

0
1

0

1
2

1

0
2

2

1

1

2

0

2
1

2

1
0

1

2
0

2

0

2

1

2

1

2

1

2

0

2

0

0

0

1

0

1

0

1

0

0

1

0

0

1

0

2

1

0

1

2

2

0

2

1

1

0

2

0

0

1

2

1

0

2

1

2

An initial segment of (FT3 ;≤h).

In this work we make the next step by extending the Wagner
hierarchy in two directions: from the well nested words to the words
of bounded stack height, and from languages to k-partitions. Our
main result gives a complete effective characterization of the
corresponding structures.

Although DVPA on words of bounded stack height have many
common features with DFA, many details are different and require
new notions and facts which are interesting on their own. The
proof techniques here are quite different from those in [10]. The
effective extensions of Wagner’s theory may be of interest not only
for automata theory of infinite words but also for the descriptive set
theory because they help to identify the constructive part of (in
general, very non-constructive) Wadge hierarchy.

The general case of DVPA (and of non-deterministic VPA) will
probably require new methods and techniques, because the set of
Wadge degrees occupied by the corresponding languages and
k-partitions is richer than the Wadge degrees of DVP languages of
words of bounded stack height, as it follows from the results in [7]
and from our work.

In this work we make the next step by extending the Wagner
hierarchy in two directions: from the well nested words to the words
of bounded stack height, and from languages to k-partitions. Our
main result gives a complete effective characterization of the
corresponding structures.

Although DVPA on words of bounded stack height have many
common features with DFA, many details are different and require
new notions and facts which are interesting on their own. The
proof techniques here are quite different from those in [10]. The
effective extensions of Wagner’s theory may be of interest not only
for automata theory of infinite words but also for the descriptive set
theory because they help to identify the constructive part of (in
general, very non-constructive) Wadge hierarchy.

The general case of DVPA (and of non-deterministic VPA) will
probably require new methods and techniques, because the set of
Wadge degrees occupied by the corresponding languages and
k-partitions is richer than the Wadge degrees of DVP languages of
words of bounded stack height, as it follows from the results in [7]
and from our work.

In this work we make the next step by extending the Wagner
hierarchy in two directions: from the well nested words to the words
of bounded stack height, and from languages to k-partitions. Our
main result gives a complete effective characterization of the
corresponding structures.

Although DVPA on words of bounded stack height have many
common features with DFA, many details are different and require
new notions and facts which are interesting on their own. The
proof techniques here are quite different from those in [10]. The
effective extensions of Wagner’s theory may be of interest not only
for automata theory of infinite words but also for the descriptive set
theory because they help to identify the constructive part of (in
general, very non-constructive) Wadge hierarchy.

The general case of DVPA (and of non-deterministic VPA) will
probably require new methods and techniques, because the set of
Wadge degrees occupied by the corresponding languages and
k-partitions is richer than the Wadge degrees of DVP languages of
words of bounded stack height, as it follows from the results in [7]
and from our work.

Visibly pushdown automata

In the context of visibly pushdown automata, the input alphabet Σ
is split into three disjoint sets of left brackets Σ+1, right brackets
Σ−1 and neutral symbols Σ0. In this paper, symbols from Σ+1 and
Σ−1 shall be denoted by left and right angled brackets, respectively
(<, >), whereas lower-case Latin letters from the beginning of the
alphabet (a, b . . .) shall be used for symbols from Σ0. Usually we
work with a fixed such alphabet which is often omitted from the
corresponding notation.

Along with the input alphabet Σ, a visibly pushdown automaton
has a non-empty finite stack alphabet Γ and a special symbol
⊥ ̸∈ Γ which denotes the bottom of the stack. The variable γ is
used below to denote elements of Γ, while variables x, y, . . . denote
finite words over Γ (which are called stack contents).

Visibly pushdown automata

In the context of visibly pushdown automata, the input alphabet Σ
is split into three disjoint sets of left brackets Σ+1, right brackets
Σ−1 and neutral symbols Σ0. In this paper, symbols from Σ+1 and
Σ−1 shall be denoted by left and right angled brackets, respectively
(<, >), whereas lower-case Latin letters from the beginning of the
alphabet (a, b . . .) shall be used for symbols from Σ0. Usually we
work with a fixed such alphabet which is often omitted from the
corresponding notation.

Along with the input alphabet Σ, a visibly pushdown automaton
has a non-empty finite stack alphabet Γ and a special symbol
⊥ ̸∈ Γ which denotes the bottom of the stack. The variable γ is
used below to denote elements of Γ, while variables x, y, . . . denote
finite words over Γ (which are called stack contents).

By a deterministic visibly pushdown automaton (DVPA) over Σ we
mean a tuple M = (Q, in,Γ, {δc}c∈Σ) consisting of a finite
non-empty set Q of states, an initial state in ∈ Q, a stack alphabet
Γ, and a family {δc}c∈Σ of transition functions where δc : Q → Q
for c ∈ Σ0, δc : Q → Q× Γ for c ∈ Σ+1, and
δc : Q× (Γ ∪ {⊥}) → Q for c ∈ Σ−1.

We call elements of Q× Γ∗ configurations of M and denote them
as (q, x), (r, y), Configuration (in, ε) is called the initial
configuration of M. Any letter c ∈ Σ induces a unary function
(q, x) 7→ (q, x) · c on Q× Γ∗ by the following rules:
(q, x) · a = (δa(q), x), (q, x)· <= (r, x · γ) where (r, γ) = δ<(q),
(q, ε)· >= (δ>(q,⊥), ε), and (q, x · γ)· >= (δ>(q, γ), x). Note
that the top stack symbol in (q, x) is the last symbol of x (or ⊥, if
x = ε), i.e., the push and pop operations are performed on the
right end of the stack content x. Subsets of Q (i.e., elements of
P (Q)) are sometimes called macrostates of M.

By a deterministic visibly pushdown automaton (DVPA) over Σ we
mean a tuple M = (Q, in,Γ, {δc}c∈Σ) consisting of a finite
non-empty set Q of states, an initial state in ∈ Q, a stack alphabet
Γ, and a family {δc}c∈Σ of transition functions where δc : Q → Q
for c ∈ Σ0, δc : Q → Q× Γ for c ∈ Σ+1, and
δc : Q× (Γ ∪ {⊥}) → Q for c ∈ Σ−1.

We call elements of Q× Γ∗ configurations of M and denote them
as (q, x), (r, y), Configuration (in, ε) is called the initial
configuration of M. Any letter c ∈ Σ induces a unary function
(q, x) 7→ (q, x) · c on Q× Γ∗ by the following rules:
(q, x) · a = (δa(q), x), (q, x)· <= (r, x · γ) where (r, γ) = δ<(q),
(q, ε)· >= (δ>(q,⊥), ε), and (q, x · γ)· >= (δ>(q, γ), x). Note
that the top stack symbol in (q, x) is the last symbol of x (or ⊥, if
x = ε), i.e., the push and pop operations are performed on the
right end of the stack content x. Subsets of Q (i.e., elements of
P (Q)) are sometimes called macrostates of M.

Any finite word u ∈ Σ∗ induces a unary function (q, x) 7→ (q, x) · u
on Q× Γ∗ by induction: (q, x)ε = (q, x) and
(q, x) · (u · c) = ((q, x) · u) · c. For α ∈ Σω, by (q, x) · α we denote
the sequence of configurations {(q, x) · α ↾i}i<ω called the α-run of
M starting with (q, x). Abusing the notation (q, x) · u above, we
also use it to denote the u-run of M starting with (q, x), i.e., the
sequence {(q, x) · u ↾i}i<|u|.

Define also the function fM : Σω → P (Q) by setting fM(α) to be
the set of states which occur infinitely often in the α-run (in, ε)α.
We say that a configuration (r, y) is reachable from (q, x) if
(r, y) = (q, x)u for some u ∈ Σ∗. The configuration (r, y) is
reachable if it is reachable from the initial state (in, ε).

Similar to DFA, for DVPA there are natural operations of Cartesian
product. We briefly define one of these. Given DVPA
M1 = (Q1, in1,Γ1, {δc1}c∈Σ) and M2 = (Q2, in2,Γ2, {δc2}c∈Σ)
with stack bottom letters ⊥1,⊥2, their product
M = M1 ×M2 = (Q, in,Γ, {δc}c∈Σ), with stack bottom letter
⊥ = (⊥1,⊥2), is defined by:

Any finite word u ∈ Σ∗ induces a unary function (q, x) 7→ (q, x) · u
on Q× Γ∗ by induction: (q, x)ε = (q, x) and
(q, x) · (u · c) = ((q, x) · u) · c. For α ∈ Σω, by (q, x) · α we denote
the sequence of configurations {(q, x) · α ↾i}i<ω called the α-run of
M starting with (q, x). Abusing the notation (q, x) · u above, we
also use it to denote the u-run of M starting with (q, x), i.e., the
sequence {(q, x) · u ↾i}i<|u|.

Define also the function fM : Σω → P (Q) by setting fM(α) to be
the set of states which occur infinitely often in the α-run (in, ε)α.
We say that a configuration (r, y) is reachable from (q, x) if
(r, y) = (q, x)u for some u ∈ Σ∗. The configuration (r, y) is
reachable if it is reachable from the initial state (in, ε).

Similar to DFA, for DVPA there are natural operations of Cartesian
product. We briefly define one of these. Given DVPA
M1 = (Q1, in1,Γ1, {δc1}c∈Σ) and M2 = (Q2, in2,Γ2, {δc2}c∈Σ)
with stack bottom letters ⊥1,⊥2, their product
M = M1 ×M2 = (Q, in,Γ, {δc}c∈Σ), with stack bottom letter
⊥ = (⊥1,⊥2), is defined by:

Any finite word u ∈ Σ∗ induces a unary function (q, x) 7→ (q, x) · u
on Q× Γ∗ by induction: (q, x)ε = (q, x) and
(q, x) · (u · c) = ((q, x) · u) · c. For α ∈ Σω, by (q, x) · α we denote
the sequence of configurations {(q, x) · α ↾i}i<ω called the α-run of
M starting with (q, x). Abusing the notation (q, x) · u above, we
also use it to denote the u-run of M starting with (q, x), i.e., the
sequence {(q, x) · u ↾i}i<|u|.

Define also the function fM : Σω → P (Q) by setting fM(α) to be
the set of states which occur infinitely often in the α-run (in, ε)α.
We say that a configuration (r, y) is reachable from (q, x) if
(r, y) = (q, x)u for some u ∈ Σ∗. The configuration (r, y) is
reachable if it is reachable from the initial state (in, ε).

Similar to DFA, for DVPA there are natural operations of Cartesian
product. We briefly define one of these. Given DVPA
M1 = (Q1, in1,Γ1, {δc1}c∈Σ) and M2 = (Q2, in2,Γ2, {δc2}c∈Σ)
with stack bottom letters ⊥1,⊥2, their product
M = M1 ×M2 = (Q, in,Γ, {δc}c∈Σ), with stack bottom letter
⊥ = (⊥1,⊥2), is defined by:

Q = Q1 ×Q2, in = (in1, in2), Γ = Γ1 × Γ2,
δa(q1, q2) = (δa1(q1), δ

a
2(q2)),

δ<(q1, q2) = ((r1, r2), (γ1, γ2)) where δ<1 (q1) = (r1, γ1) and
δ<2 (q2) = (r2, γ2),
δ>((q1, q2),⊥) = (δ>1 (q1,⊥1), δ

>
2 (q2,⊥2)), and

δ>((q1, q2), (γ1, γ2)) = (δa1(q1, γ1), δ
a
2(q2, γ2)).

Note that the behaviour of M “includes” the behaviours of M1

and M2, in particular fM(α) = fM1(α)× fM2(α).

A DVP Muller acceptor is a pair (M, A) where M is a DVPA and
A ⊆ P (Q) is a set of macrostates; it recognizes the set
L(M, A) = f−1

M (A). The ω-languages recognized by such
acceptors are called DVP-sets. The class D of DVP-sets is closed
under the Boolean operations [1] and is contained in the Boolean
closure BC(Σ0

2) of the second level Σ0
2 of Borel hierarchy in Σω.

Q = Q1 ×Q2, in = (in1, in2), Γ = Γ1 × Γ2,
δa(q1, q2) = (δa1(q1), δ

a
2(q2)),

δ<(q1, q2) = ((r1, r2), (γ1, γ2)) where δ<1 (q1) = (r1, γ1) and
δ<2 (q2) = (r2, γ2),
δ>((q1, q2),⊥) = (δ>1 (q1,⊥1), δ

>
2 (q2,⊥2)), and

δ>((q1, q2), (γ1, γ2)) = (δa1(q1, γ1), δ
a
2(q2, γ2)).

Note that the behaviour of M “includes” the behaviours of M1

and M2, in particular fM(α) = fM1(α)× fM2(α).

A DVP Muller acceptor is a pair (M, A) where M is a DVPA and
A ⊆ P (Q) is a set of macrostates; it recognizes the set
L(M, A) = f−1

M (A). The ω-languages recognized by such
acceptors are called DVP-sets. The class D of DVP-sets is closed
under the Boolean operations [1] and is contained in the Boolean
closure BC(Σ0

2) of the second level Σ0
2 of Borel hierarchy in Σω.

Q = Q1 ×Q2, in = (in1, in2), Γ = Γ1 × Γ2,
δa(q1, q2) = (δa1(q1), δ

a
2(q2)),

δ<(q1, q2) = ((r1, r2), (γ1, γ2)) where δ<1 (q1) = (r1, γ1) and
δ<2 (q2) = (r2, γ2),
δ>((q1, q2),⊥) = (δ>1 (q1,⊥1), δ

>
2 (q2,⊥2)), and

δ>((q1, q2), (γ1, γ2)) = (δa1(q1, γ1), δ
a
2(q2, γ2)).

Note that the behaviour of M “includes” the behaviours of M1

and M2, in particular fM(α) = fM1(α)× fM2(α).

A DVP Muller acceptor is a pair (M, A) where M is a DVPA and
A ⊆ P (Q) is a set of macrostates; it recognizes the set
L(M, A) = f−1

M (A). The ω-languages recognized by such
acceptors are called DVP-sets. The class D of DVP-sets is closed
under the Boolean operations [1] and is contained in the Boolean
closure BC(Σ0

2) of the second level Σ0
2 of Borel hierarchy in Σω.

A DVP k-partition is a k-partition A : Σω → k̄ all of whose
components are DVP-sets. A DVP k-partition A may be specified
by a k-tuple of DVP Muller acceptors which recognize the
components A0, . . . , Ak−1 but for our purposes we need a slightly
different presentation similar to that used in [13, 15]. A DVP
Muller k-acceptor is a pair (M, A) where M is a DVPA and
A : P (Q) → k̄ is a k-partition of P (Q). The DVP Muller
k-acceptor recognises the DVP k-partition L(M, A) = A ◦ fM
where fM : Σω → P (Q) is defined above.

Proposition
A k-partition L : Xω → k̄ is DVP iff it is recognised by a DVP
Muller k-acceptor.

Proposition
For every Σ we have: RΣ ⊆ DΣ. If at least one of Σ+1,Σ−1 is
empty then RΣ = DΣ, otherwise the inclusion RΣ ⊂ DΣ is proper,
even for languages of well-nested words. Similarly for the regular
and DVP k-partitions.

A DVP k-partition is a k-partition A : Σω → k̄ all of whose
components are DVP-sets. A DVP k-partition A may be specified
by a k-tuple of DVP Muller acceptors which recognize the
components A0, . . . , Ak−1 but for our purposes we need a slightly
different presentation similar to that used in [13, 15]. A DVP
Muller k-acceptor is a pair (M, A) where M is a DVPA and
A : P (Q) → k̄ is a k-partition of P (Q). The DVP Muller
k-acceptor recognises the DVP k-partition L(M, A) = A ◦ fM
where fM : Σω → P (Q) is defined above.

Proposition
A k-partition L : Xω → k̄ is DVP iff it is recognised by a DVP
Muller k-acceptor.

Proposition
For every Σ we have: RΣ ⊆ DΣ. If at least one of Σ+1,Σ−1 is
empty then RΣ = DΣ, otherwise the inclusion RΣ ⊂ DΣ is proper,
even for languages of well-nested words. Similarly for the regular
and DVP k-partitions.

A DVP k-partition is a k-partition A : Σω → k̄ all of whose
components are DVP-sets. A DVP k-partition A may be specified
by a k-tuple of DVP Muller acceptors which recognize the
components A0, . . . , Ak−1 but for our purposes we need a slightly
different presentation similar to that used in [13, 15]. A DVP
Muller k-acceptor is a pair (M, A) where M is a DVPA and
A : P (Q) → k̄ is a k-partition of P (Q). The DVP Muller
k-acceptor recognises the DVP k-partition L(M, A) = A ◦ fM
where fM : Σω → P (Q) is defined above.

Proposition
A k-partition L : Xω → k̄ is DVP iff it is recognised by a DVP
Muller k-acceptor.

Proposition
For every Σ we have: RΣ ⊆ DΣ. If at least one of Σ+1,Σ−1 is
empty then RΣ = DΣ, otherwise the inclusion RΣ ⊂ DΣ is proper,
even for languages of well-nested words. Similarly for the regular
and DVP k-partitions.

Stack height factorizations

Define the stack height function sh : Σ∗ → ω by induction:
sh(ε) = 0, sh(u · a) = sh(u), sh(u· <) = sh(u) + 1,
sh(u· >) = min{sh(u)− 1, 0}. Let Lmwm be the set of minimally
well-matched words, i.e., words of the form < w > where the last
letter > matches the first letter <, and sh(< v) is positive for
every v ⊑ w. Then W = (Σ0 ∪ Lmwm)

∗ is the set of well-matched
(also known as well-nested) words. We also define the sets
W−1 = (Σ−1 ∪ Σ0 ∪ Lmwm)

∗ of words without unmatched left
brackets, and W+1 = (Σ+1 ∪ Σ0 ∪ Lmwm)

∗ of words without
unmatched right brackets. Then W = W−1 ∩W+1 and
W−1 = {u ∈ Σ∗ | sh(u) = 0}.Note that Σ∗ = W−1 ·W+1, and
(W−1,W−1 · (W+1 \W)) is a partition of Σ∗.

For any n < ω, let Hn = {w ∈ Σ+ | sh(w) = n} be the set of
non-empty words of stack height n. Then {Hn}n is a partition of
Σ+, and Hn coincides with the set of non-empty words which have
precisely n unmatched left brackets.

Stack height factorizations

Define the stack height function sh : Σ∗ → ω by induction:
sh(ε) = 0, sh(u · a) = sh(u), sh(u· <) = sh(u) + 1,
sh(u· >) = min{sh(u)− 1, 0}. Let Lmwm be the set of minimally
well-matched words, i.e., words of the form < w > where the last
letter > matches the first letter <, and sh(< v) is positive for
every v ⊑ w. Then W = (Σ0 ∪ Lmwm)

∗ is the set of well-matched
(also known as well-nested) words. We also define the sets
W−1 = (Σ−1 ∪ Σ0 ∪ Lmwm)

∗ of words without unmatched left
brackets, and W+1 = (Σ+1 ∪ Σ0 ∪ Lmwm)

∗ of words without
unmatched right brackets. Then W = W−1 ∩W+1 and
W−1 = {u ∈ Σ∗ | sh(u) = 0}.Note that Σ∗ = W−1 ·W+1, and
(W−1,W−1 · (W+1 \W)) is a partition of Σ∗.

For any n < ω, let Hn = {w ∈ Σ+ | sh(w) = n} be the set of
non-empty words of stack height n. Then {Hn}n is a partition of
Σ+, and Hn coincides with the set of non-empty words which have
precisely n unmatched left brackets.

Proposition
H0 = W−1 \ {ε}, H1 = W−1· < ·W , and Hn+2 = Hn+1· < ·W .

For any n ≤ ω, let Gn be the set of infinite words which have
precisely n unmatched left brackets, then {Gn}n≤ω is a partition of
Σω. Let wn = wn(Σ) = (Σ0 ∪ Lmwm)

ω be the set of well-matched
infinite words over Σ. Let also G<ω =

⋃
n<ω Gn and

G≤n = G0 ∪ · · · ∪Gn for n < ω.

Proposition
G0 = (Σ−1 ∪ Σ0 ∪ Lmwm)

ω, G1 = W−1· < ·wn,
Gn+2 = Hn+1· < ·wn for n < ω, and Gω = W−1 · (< ·W)ω.

Proposition
H0 = W−1 \ {ε}, H1 = W−1· < ·W , and Hn+2 = Hn+1· < ·W .
For any n ≤ ω, let Gn be the set of infinite words which have
precisely n unmatched left brackets, then {Gn}n≤ω is a partition of
Σω. Let wn = wn(Σ) = (Σ0 ∪ Lmwm)

ω be the set of well-matched
infinite words over Σ. Let also G<ω =

⋃
n<ω Gn and

G≤n = G0 ∪ · · · ∪Gn for n < ω.

Proposition
G0 = (Σ−1 ∪ Σ0 ∪ Lmwm)

ω, G1 = W−1· < ·wn,
Gn+2 = Hn+1· < ·wn for n < ω, and Gω = W−1 · (< ·W)ω.

For any w ∈ Σ+ (resp. α ∈ Σω), we can group maximal subwords
which are in Lmwm, and obtain a unique factorization (which we
call sh-factorization) w = w0 · · ·wn (resp. α = w0w1 · · ·) where
each factor wi is in Σ ∪ Lmwm.

In the case of an infinite word α, the sh-factorization is also
determined by the set
Sα = {n < ω | ∀m ≥ n(sh(α ↾m) ≥ sh(α ↾n))} (see Section 3 of
[7] where Sα is denoted as Stepsα), namely wi = α[ni, ni+1) for
every i < ω where Sα = {0 = n0 < n1 < · · · }. A similar
description exists to the case of a finite word w, only now the set
Sw is finite.

Proposition

1. The sets Lmwm,W,W−1,W+1 are computable, and Hn is
computable uniformly on n.

2. The sh-factorization function on Σ+ is computable.

For any w ∈ Σ+ (resp. α ∈ Σω), we can group maximal subwords
which are in Lmwm, and obtain a unique factorization (which we
call sh-factorization) w = w0 · · ·wn (resp. α = w0w1 · · ·) where
each factor wi is in Σ ∪ Lmwm.

In the case of an infinite word α, the sh-factorization is also
determined by the set
Sα = {n < ω | ∀m ≥ n(sh(α ↾m) ≥ sh(α ↾n))} (see Section 3 of
[7] where Sα is denoted as Stepsα), namely wi = α[ni, ni+1) for
every i < ω where Sα = {0 = n0 < n1 < · · · }. A similar
description exists to the case of a finite word w, only now the set
Sw is finite.

Proposition

1. The sets Lmwm,W,W−1,W+1 are computable, and Hn is
computable uniformly on n.

2. The sh-factorization function on Σ+ is computable.

For any w ∈ Σ+ (resp. α ∈ Σω), we can group maximal subwords
which are in Lmwm, and obtain a unique factorization (which we
call sh-factorization) w = w0 · · ·wn (resp. α = w0w1 · · ·) where
each factor wi is in Σ ∪ Lmwm.

In the case of an infinite word α, the sh-factorization is also
determined by the set
Sα = {n < ω | ∀m ≥ n(sh(α ↾m) ≥ sh(α ↾n))} (see Section 3 of
[7] where Sα is denoted as Stepsα), namely wi = α[ni, ni+1) for
every i < ω where Sα = {0 = n0 < n1 < · · · }. A similar
description exists to the case of a finite word w, only now the set
Sw is finite.

Proposition

1. The sets Lmwm,W,W−1,W+1 are computable, and Hn is
computable uniformly on n.

2. The sh-factorization function on Σ+ is computable.

Cycles of DVPA

A basic notion in the study of Wagner hierarchy is the notion of a
cycle of a DFA (see [16, 15]). The same applies to DVPA but in
this case cycles are a bit more complex.

Definition
A cycle of a DVPA M is a pair c = (u, (q, x)) where u is a
nonempty word from W−1 ∪W+1, (q, x) is a reachable
configuration of M, x = ε whenever u ∈ W−1 \W , and
(q, x)u = (q, y) for some y ∈ Γ∗. In the case u ∈ W−1, we call
sh(c) = |x| the stack height of c.

The set of cycles of M is denoted by CM. The set of states in the
run (q, x)u is called the macrostate of c and denoted as M(c), so
M : CM → P (Q). Let C≤n

M = {c ∈ CM | u ∈ W−1 ∧ sh(c) ≤ n}
for every n < ω. We say that a cycle d = (v, (r, y)) ∈ CM is
reachable from c if (r, y) is reachable from (q, x).

Cycles of DVPA

A basic notion in the study of Wagner hierarchy is the notion of a
cycle of a DFA (see [16, 15]). The same applies to DVPA but in
this case cycles are a bit more complex.

Definition
A cycle of a DVPA M is a pair c = (u, (q, x)) where u is a
nonempty word from W−1 ∪W+1, (q, x) is a reachable
configuration of M, x = ε whenever u ∈ W−1 \W , and
(q, x)u = (q, y) for some y ∈ Γ∗. In the case u ∈ W−1, we call
sh(c) = |x| the stack height of c.

The set of cycles of M is denoted by CM. The set of states in the
run (q, x)u is called the macrostate of c and denoted as M(c), so
M : CM → P (Q). Let C≤n

M = {c ∈ CM | u ∈ W−1 ∧ sh(c) ≤ n}
for every n < ω. We say that a cycle d = (v, (r, y)) ∈ CM is
reachable from c if (r, y) is reachable from (q, x).

Cycles of DVPA

A basic notion in the study of Wagner hierarchy is the notion of a
cycle of a DFA (see [16, 15]). The same applies to DVPA but in
this case cycles are a bit more complex.

Definition
A cycle of a DVPA M is a pair c = (u, (q, x)) where u is a
nonempty word from W−1 ∪W+1, (q, x) is a reachable
configuration of M, x = ε whenever u ∈ W−1 \W , and
(q, x)u = (q, y) for some y ∈ Γ∗. In the case u ∈ W−1, we call
sh(c) = |x| the stack height of c.

The set of cycles of M is denoted by CM. The set of states in the
run (q, x)u is called the macrostate of c and denoted as M(c), so
M : CM → P (Q). Let C≤n

M = {c ∈ CM | u ∈ W−1 ∧ sh(c) ≤ n}
for every n < ω. We say that a cycle d = (v, (r, y)) ∈ CM is
reachable from c if (r, y) is reachable from (q, x).

For any u ∈ Σ∗ and q ∈ Q, let ũq denote the unique stack content
such that (q, ε)u = (r, ũq) for some r ∈ Q. Note that ũq = ε
whenever u ∈ W−1. For any c = (u, (q, x)) ∈ CM and n ≥ 1, let
cn = (un, (q, x)).

Lemma
Let c = (u, (q, x)) ∈ CM and n ≥ 1. Then
(q, x)un = (u, (q, x · ũnq)), the pairs cn, and (u, (q, x · ũnq)) are
cycles of M, and M(cn) = M(c) = M((u, x · ũnq)).

We define a function gM : CM → Σω by setting gM(c) = u′ · uω
where c = (u, (q, x)) and u′ is a word with (in, ε)u′ = (q, x).

Lemma
For any c = (u, (q, x)) ∈ CM we have fM(gM(c)) = M(c). If
u ∈ W−1 ∧ x = ε (resp. u ∈ W ∧ x ̸= ε, u ∈ W+1 \W) then
gM(c) is in G0 (resp. Gn+1 for some n < ω, Gω).

Lemma
For any α ∈ Σω there is c = cM(α) ∈ CM such that
M(c) = fM(α). Furthermore, cM(α) ∈ C≤n

M for α ∈ G≤n, and
{M(c) | c ∈ CM} = {fM(α) | α ∈ Σω}.

For any u ∈ Σ∗ and q ∈ Q, let ũq denote the unique stack content
such that (q, ε)u = (r, ũq) for some r ∈ Q. Note that ũq = ε
whenever u ∈ W−1. For any c = (u, (q, x)) ∈ CM and n ≥ 1, let
cn = (un, (q, x)).

Lemma
Let c = (u, (q, x)) ∈ CM and n ≥ 1. Then
(q, x)un = (u, (q, x · ũnq)), the pairs cn, and (u, (q, x · ũnq)) are
cycles of M, and M(cn) = M(c) = M((u, x · ũnq)).
We define a function gM : CM → Σω by setting gM(c) = u′ · uω
where c = (u, (q, x)) and u′ is a word with (in, ε)u′ = (q, x).

Lemma
For any c = (u, (q, x)) ∈ CM we have fM(gM(c)) = M(c). If
u ∈ W−1 ∧ x = ε (resp. u ∈ W ∧ x ̸= ε, u ∈ W+1 \W) then
gM(c) is in G0 (resp. Gn+1 for some n < ω, Gω).

Lemma
For any α ∈ Σω there is c = cM(α) ∈ CM such that
M(c) = fM(α). Furthermore, cM(α) ∈ C≤n

M for α ∈ G≤n, and
{M(c) | c ∈ CM} = {fM(α) | α ∈ Σω}.

DVP ω-languages in Borel hierarchy

Definition
Let c = (u, (q, x)) and d = (v, (r, y)) be in CM. Then c ≤0 d, if
for every m ≥ 1 there is n ≥ 1 such that dn is reachable from cm

(i.e., (r, yṽnr) is reachable from (q, xũmr)). Let also c ≤1 d mean
that c ≡0 d and M(c) ⊇ M(d).

Let Ci be the class of all ≤i-up subsets of C≤n
M (a set A ⊆ C≤n

M is
≤i-up if a ∈ A and a ≤i c imply c ∈ A; ≤i-down sets are defined
similarly). The pair C = (C0, C1) is called the 2-base of up-sets over
(C≤n

M ;≤0,≤1). According to [15], the 2-base C is interpolable if for
every disjoint ≤1-down sets A,B ⊆ C≤n

M there is a finite Boolean
combination C of C0-sets which separates A from B, i.e., A ⊆ C
and C ∩B = ∅. The structure (C≤n

M ;≤0,≤1) is a 2-preorder if
both ≤0,≤1 are preorders, and c ≤1 d implies c ≡0 d; the
2-preorder is compatible if c ≡0 d implies ∃e(e ≤1 c ∧ e ≤1 d).

DVP ω-languages in Borel hierarchy

Definition
Let c = (u, (q, x)) and d = (v, (r, y)) be in CM. Then c ≤0 d, if
for every m ≥ 1 there is n ≥ 1 such that dn is reachable from cm

(i.e., (r, yṽnr) is reachable from (q, xũmr)). Let also c ≤1 d mean
that c ≡0 d and M(c) ⊇ M(d).
Let Ci be the class of all ≤i-up subsets of C≤n

M (a set A ⊆ C≤n
M is

≤i-up if a ∈ A and a ≤i c imply c ∈ A; ≤i-down sets are defined
similarly). The pair C = (C0, C1) is called the 2-base of up-sets over
(C≤n

M ;≤0,≤1). According to [15], the 2-base C is interpolable if for
every disjoint ≤1-down sets A,B ⊆ C≤n

M there is a finite Boolean
combination C of C0-sets which separates A from B, i.e., A ⊆ C
and C ∩B = ∅. The structure (C≤n

M ;≤0,≤1) is a 2-preorder if
both ≤0,≤1 are preorders, and c ≤1 d implies c ≡0 d; the
2-preorder is compatible if c ≡0 d implies ∃e(e ≤1 c ∧ e ≤1 d).

Lemma
For any DVPA M and any n < ω, the structure (C≤n

M ;≤0,≤1) is a
compatible 2-preorder. This structure is computably presentable
uniformly on n. There are only finitely many classes under the
equivalence relation ≡0 induced by ≤0. The 2-base C is
interpolable.

Lemma
Let (M, A) be a DVP Muller acceptor.

1. If the set A = {c ∈ C≤n
M | M(c) ∈ A} is ≤0-up then the set

LA = {α ∈ G≤n | fM(α) ∈ A} is in Σ1(G≤n), otherwise LA

is Π1(G≤n)-hard w.r.t. the Wadge reducibility in G≤n.
2. If A is ≤1-up then LA is in Σ2(G≤n), otherwise LA is

Π2(G≤n)-hard w.r.t. the Wadge reducibility in G≤n.

Lemma
For any DVPA M and any n < ω, the structure (C≤n

M ;≤0,≤1) is a
compatible 2-preorder. This structure is computably presentable
uniformly on n. There are only finitely many classes under the
equivalence relation ≡0 induced by ≤0. The 2-base C is
interpolable.

Lemma
Let (M, A) be a DVP Muller acceptor.

1. If the set A = {c ∈ C≤n
M | M(c) ∈ A} is ≤0-up then the set

LA = {α ∈ G≤n | fM(α) ∈ A} is in Σ1(G≤n), otherwise LA

is Π1(G≤n)-hard w.r.t. the Wadge reducibility in G≤n.
2. If A is ≤1-up then LA is in Σ2(G≤n), otherwise LA is

Π2(G≤n)-hard w.r.t. the Wadge reducibility in G≤n.

Main result

The Wadge reducibility for k-partitions K,L : G≤n → k̄ is defined
as follows: K ≤W L, if K = L ◦ g for some continuous function g

on G≤n. Let DVP(k)
≤n be the set of such k-partitions recognized by

the DVP Muller k-acceptors. Let Tk be the set of finite k̄-labeled
trees with the homomorphic preorder. Let (FTk ;≤h) be the set of
finite Tk-labeled forests with the homomorphic preorder.

Theorem
For any n < ω, the quotient posets of (DVP(k)

≤n;≤W) and of
(FTk ;≤h) are computably isomorphic and computably presentable.

Corollary
The quotient posets of (DVP(k)

≤n;≤W) and of (Rk;≤W) are
isomorphic.

Remark. The quotient posets of (DVP
(k)
<ω;≤W) and of (Rk;≤W)

are not isomorphic.

Main result

The Wadge reducibility for k-partitions K,L : G≤n → k̄ is defined
as follows: K ≤W L, if K = L ◦ g for some continuous function g

on G≤n. Let DVP(k)
≤n be the set of such k-partitions recognized by

the DVP Muller k-acceptors. Let Tk be the set of finite k̄-labeled
trees with the homomorphic preorder. Let (FTk ;≤h) be the set of
finite Tk-labeled forests with the homomorphic preorder.

Theorem
For any n < ω, the quotient posets of (DVP(k)

≤n;≤W) and of
(FTk ;≤h) are computably isomorphic and computably presentable.

Corollary
The quotient posets of (DVP(k)

≤n;≤W) and of (Rk;≤W) are
isomorphic.

Remark. The quotient posets of (DVP(k)
<ω;≤W) and of (Rk;≤W)

are not isomorphic.

Thank you for your attention!

References

[1] Alur R., Madhusudan P.: Visibly pushdown languages, ACM
Symposium on Theory of Computing (STOC 2004, Chicago, USA,
13–16 June 2004), 202–211.

[2] Alur R., Madhusudan P.: Adding nesting structure to words,
Journal of the ACM, 56:3 (2009).

[3] von Braunmühl B., Verbeek R.: Input driven languages are
recognized in log n space, Annals of Discrete Mathematics, 24
(1985), 1–20.

[4] Duparc J.: A hierarchy of deterministic context-free ω-languages,
Theoretical Computer Science, 290(3) (2003) 1253–1300.

[5] Finkel O.: Topological complexity of context-free ω-languages: a
survey, In: Language, Culture, Computation: Studies in Honor of
Yaacov Choueka. Ed. by Nachum Dershowitz and Ephraim Nissan,
Part I, Computing, Theory and Technology, LNCS 8001, Springer,
2014.

http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1016/S0304-0208(08)73072-X
http://dx.doi.org/10.1016/S0304-0208(08)73072-X

[6] Kihara T., Montalbán A.: On the structure of the Wadge degrees
of bqo-valued Borel functions, Trans. Amer. Math. Soc. 371
(2019), no. 11, 7885–7923.

[7] Löding C., Madhusudan P., Serre O.: Visibly pushdown games,
FSTTCS 2004, 408–420.

[8] Mehlhorn K.: Pebbling mountain ranges and its application to
DCFL-recognition, Automata, Languages and Programming
(ICALP 1980, Noordweijkerhout, The Netherlands, 14–18 July
1980), LNCS 85, 422-435.

[9] Okhotin A., Salomaa K.: Complexity of input-driven pushdown
automata, SIGACT News, 45:2 (2014), 47–67.

[10] Okhotin A., Selivanov V.: Input-driven automata on well-nested
infinite strings: automata-theoretic and topological properties. R.
Santhanam and D. Musatov (Eds.): CSR 2021, Lecture Notes in
Computer Science, v. 12730, pp. 349–360, 2021.

https://doi.org/10.1007/978-3-540-30538-5_34
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1007/3-540-10003-2_89
http://doi.acm.org/10.1145/2636805.2636821
http://doi.acm.org/10.1145/2636805.2636821

[11] Selivanov V.L.: Wadge degrees of ω-languages of deterministic
Turing machines. Theoretical Informatics and Applications, 37
(2003), 67–83.

[12] Selivanov V.L.: Hierarchies and reducibilities on regular languages
related to modulo counting. RAIRO Theoretical Informatics and
Applications, 41 (2009), 95–132.

[13] Selivanov V.L.: A fine hierarchy of ω-regular k-partitions. B. Löwe
et.al. (Eds.): CiE 2011, LNCS v. 6735, pp. 260–269. Springer,
Heidelberg (2011).

[14] Selivanov V.L.: Extending Wadge theory to k-partitions. J. Kari, F.
Manea and Ion Petre (eds.) LNCS 10307, 2017, 387–399, Berlin,
Springer.

[15] Selivanov V.: Wadge degrees of classes of ω-regular k-partitions.
To appear in Journal of Automata, Languages and Combinatorics.
An earlier version: Arxiv 2104.10358.

[16] Wagner K.: On ω-regular sets. Information and Control, 43 (1979),
123–177.

