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P> probabilistic (Shannon): random variable & with n
values (p; + ... + p, = 1) carries

1 1

H(p) = p; loga + ...+ p,log —

n
bits of information
P> algorithmic: the amount of information (complexity)

C(x) in a bit string x is the minimal bit length of a
program that produces x



Direct connections

P> (CP) nvalues: H(¢) < log, n (achieved when all
outcomes are equiprobable)

P> (PA) m independent trials of a random variable &

with high probability the complexity of the outcome
is close to mH(§)

> (CA) there are at most 2" strings of complexity less

than n; every element of a simple set with N
(almost)

elements has complexity not exceeding log2 N
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P> (CP) nvalues: H(¢) < log, n (achieved when all
outcomes are equiprobable)

P> (PA) m independent trials of a random variable &:
with high probability the complexity of the outcome
is close to mH(§)

P> (CA) there are at most 2" strings of complexity less
than n; every element of a simple set with N
elements has complexity not exceeding log2 N
(almost)



Indirect connections: similar properties (1)

P H(E ) < H(E) + H()

P C(x,y) < C(x) + C(y) + O(log n) for bit strings
x,y of length at most n

P log, S < log, S, +log, S,




Indirect connections: similar properties (2)

P H(&n) < HE) +H®E)
P C(x,y) < C(x) + C(y|x) + O(log n) for strings x, y
of length at most n

NN

P log, S < log, S, + log, max, Sy(a)




Indirect connections: similar properties (3)

P H(&)+H® &) < HEn)

P C(x) + C(y|x) < C(x,y) + O(log n) for strings x, y
of length at most n

P logS <u+v=ScanbesplitintoS =S US" such
thatlog, S, <u and max,log, Sy(a) < v




General results

P> The same linear inequalities are true for Shannon
entropy and Kolmogorov complexity
(Romashchenko)

(Vereshchagin et al., 2000s)

2000s)

P> This class has combinatorial interpretation
P> ..and in terms of subgroup sizes (Chan, Yeang,

} The same class for space-bounded complexities
(Gécs et al., 2020)
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P> this paper: one more result of this type using
dimensions
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Algorithmic dimension theory

P> Hausdorff and packing dimensions

|- S -t
3-adic ga4,. €102}

P> dimension =log 2/log 3, “use only 2 digits out of 3":
to specify any point with a given precision we need
less information (factor log 2/ log 3) than in general
case



Effective dimensions

P for x € (0,1) let C,(x) be the complexity of
27 "-approximation to x.
P dim(x) = liminf, C,(x)/n [eff. Hausdorff]
P Dim(x) = lim sup, C,(x)/n [eff. packing]
P ForA c (0,1) let
dim(A) = max,c, dim(x)
Dim(A) = max,c4 Dim(x)
P> locality paradox: how many / which elements are in A

P> a point can have high effective dimension; a set of

high (classical) dimension always contains a point of
high effective dimension
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P relativizing: dimS(x), DimS(x), dimS(A), DimS(A)
} point-to-set principle:

dim(A) = ming dim°(A),

Dim(A) = ming Dim°(A)
P> classical dimension =

= MiN gy MAX0in; effective dimension

} opens a way to translate information inequalities into
statements about dimensions

P forA c [0,1] x [0, 1]; projections A; and A,

Dim(A) < Dim(A;) + Dim(A,)



More examples

> 2 C(xq, x5, X3)

C(xy, x3) + C(xy, x3) + C(x,, X3)
> AcC]o 1]°, 2-dimensional projections A;,, A,3, A;3
2Dim(A) <
P C(x)) + Clxy, X, x3)

Dim(A,,) + Dim(A;;) + Dim(A,;)
< C(xy, x5) + C (x4, x3)
P for A c [0,1]% if (for some u and v)

Dim(A,,) + Dim(A;;) <u+v

dim(A))

<
then A can be splitted into A = A UA such that
< u,

dim(A4")
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More examples
P 2 C(xy, X5, x3) < C(xp,x5) + C(x1, x3) + C(xp, x3)
} A C [0,1]3, 2-dimensional projections A;,, A,3, A1;:

2Dim(A) < Dim(A;,) + Dim(A;3) + Dim(A,;)

P C(xy) + Clxy, Xp, x3) < Clxy, Xp) + C(xp, X3)
P for A c [0,1]%: if (for some u and v)

Dim(A,,) + Dim(A;;) <u+v
then A can be splitted into A = A" U A" such that

dim(4)) <u, dim@A") <v
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New description of information inequalities

P> Every true linear inequality for entropies/complexites
can be translated into a (true) statement about
classical Hausdorff and packing dimensions as
described

P> If alinear inequality is not true for
entropies/complexities, the corresponding statement
about dimensions is also false



THANKS!



