Inequalities for entropies and dimensions

alexander.shen@lirmm.fr,
www.lirmm.fr/~ashen

LIRMM CNRS & University of Montpellier

Computability in Europe 2023

- combinatorial: n values of attribute A in a database table mean that this attribute carries $\log_2 n$ bits of information
- probabilistic (Shannon): random variable ξ with n values $(p_1 + ... + p_n = 1)$ carries

$$H(p) = p_1 \log \frac{1}{p_1} + \dots + p_n \log \frac{1}{p_n}$$

bits of information

- combinatorial: n values of attribute A in a database table mean that this attribute carries $\log_2 n$ bits of information
- probabilistic (Shannon): random variable ξ with n values $(p_1 + ... + p_n = 1)$ carries

$$H(p) = p_1 \log \frac{1}{p_1} + \dots + p_n \log \frac{1}{p_n}$$

bits of information

- combinatorial: n values of attribute A in a database table mean that this attribute carries $\log_2 n$ bits of information
- probabilistic (Shannon): random variable ξ with n values $(p_1 + ... + p_n = 1)$ carries

$$H(p) = p_1 \log \frac{1}{p_1} + \dots + p_n \log \frac{1}{p_n}$$

bits of information

- combinatorial: n values of attribute A in a database table mean that this attribute carries $\log_2 n$ bits of information
- probabilistic (Shannon): random variable ξ with n values $(p_1 + ... + p_n = 1)$ carries

$$H(p) = p_1 \log \frac{1}{p_1} + \dots + p_n \log \frac{1}{p_n}$$

bits of information

- (CP) n values: $H(\xi) \leq \log_2 n$ (achieved when all outcomes are equiprobable)
- PA) m independent trials of a random variable ξ : with high probability the complexity of the outcome is close to $mH(\xi)$
- (CA) there are at most 2^n strings of complexity less than n; every element of a simple set with N elements has complexity not exceeding $\log_2 N$ (almost)

- (CP) n values: $H(\xi) \leq \log_2 n$ (achieved when all outcomes are equiprobable)
- PA) m independent trials of a random variable ξ : with high probability the complexity of the outcome is close to $mH(\xi)$
- (CA) there are at most 2^n strings of complexity less than n; every element of a simple set with N elements has complexity not exceeding $\log_2 N$ (almost)

- (CP) n values: $H(\xi) \leq \log_2 n$ (achieved when all outcomes are equiprobable)
- PA) m independent trials of a random variable ξ : with high probability the complexity of the outcome is close to $mH(\xi)$
- (CA) there are at most 2^n strings of complexity less than n; every element of a simple set with N elements has complexity not exceeding $\log_2 N$ (almost)

- (CP) n values: $H(\xi) \leq \log_2 n$ (achieved when all outcomes are equiprobable)
- PA) m independent trials of a random variable ξ : with high probability the complexity of the outcome is close to $mH(\xi)$
- (CA) there are at most 2ⁿ strings of complexity less than n; every element of a simple set with N elements has complexity not exceeding log₂ N (almost)

- (CP) n values: $H(\xi) \leq \log_2 n$ (achieved when all outcomes are equiprobable)
- PA) m independent trials of a random variable ξ : with high probability the complexity of the outcome is close to $mH(\xi)$
- (CA) there are at most 2^n strings of complexity less than n; every element of a simple set with N elements has complexity not exceeding $\log_2 N$ (almost)

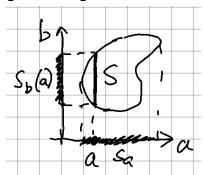
Indirect connections: similar properties (1)

- $H(\xi,\eta) \leqslant H(\xi) + H(\eta)$
- C(x, y) \leq C(x) + C(y) + O($\log n$) for bit strings x, y of length at most n



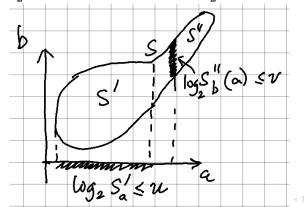
Indirect connections: similar properties (2)

- $H(\xi,\eta) \leqslant H(\xi) + H(\eta|\xi)$
- C(x, y) \leq C(x) + C(y|x) + O($\log n$) for strings x, y of length at most n



Indirect connections: similar properties (3)

- $H(\xi) + H(\eta|\xi) \leqslant H(\xi,\eta)$
- $C(x) + C(y|x) \le C(x,y) + O(\log n)$ for strings x,y of length at most n
- log S ≤ u + v ⇒ S can be split into $S = S' \cup S''$ such that $\log_2 S_a' ≤ u$ and $\max_a \log_2 S_b''(a) ≤ v$



- The same linear inequalities are true for Shannon entropy and Kolmogorov complexity (Romashchenko)
- This class has combinatorial interpretation (Vereshchagin et al., 2000s)
- ...and in terms of subgroup sizes (Chan, Yeang, 2000s)
- The same class for space-bounded complexities (Gács et al., 2020)
- this paper: one more result of this type using dimensions

- The same linear inequalities are true for Shannon entropy and Kolmogorov complexity (Romashchenko)
- This class has combinatorial interpretation (Vereshchagin et al., 2000s)
- ...and in terms of subgroup sizes (Chan, Yeang, 2000s)
- The same class for space-bounded complexities (Gács et al., 2020)
- this paper: one more result of this type using dimensions

- The same linear inequalities are true for Shannon entropy and Kolmogorov complexity (Romashchenko)
- This class has combinatorial interpretation (Vereshchagin et al., 2000s)
- ...and in terms of subgroup sizes (Chan, Yeang, 2000s)
- The same class for space-bounded complexities (Gács et al., 2020)
- this paper: one more result of this type using dimensions

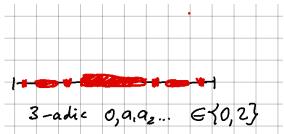
- The same linear inequalities are true for Shannon entropy and Kolmogorov complexity (Romashchenko)
- This class has combinatorial interpretation (Vereshchagin et al., 2000s)
- ...and in terms of subgroup sizes (Chan, Yeang, 2000s)
- The same class for space-bounded complexities (Gács et al., 2020)
- this paper: one more result of this type using dimensions

- The same linear inequalities are true for Shannon entropy and Kolmogorov complexity (Romashchenko)
- This class has combinatorial interpretation (Vereshchagin et al., 2000s)
- ...and in terms of subgroup sizes (Chan, Yeang, 2000s)
- The same class for space-bounded complexities (Gács et al., 2020)
- this paper: one more result of this type using dimensions

- The same linear inequalities are true for Shannon entropy and Kolmogorov complexity (Romashchenko)
- This class has combinatorial interpretation (Vereshchagin et al., 2000s)
- ...and in terms of subgroup sizes (Chan, Yeang, 2000s)
- The same class for space-bounded complexities (Gács et al., 2020)
- this paper: one more result of this type using dimensions

Algorithmic dimension theory

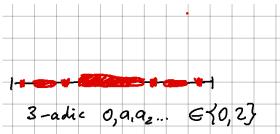
Hausdorff and packing dimensions



dimension = $\log 2/\log 3$, "use only 2 digits out of 3": to specify any point with a given precision we need less information (factor $\log 2/\log 3$) than in general case

Algorithmic dimension theory

Hausdorff and packing dimensions



dimension = $\log 2/\log 3$, "use only 2 digits out of 3": to specify any point with a given precision we need less information (factor $\log 2/\log 3$) than in general case

- for $x \in (0,1)$ let $C_n(x)$ be the complexity of 2^{-n} -approximation to x.
- $\operatorname{dim}(x) = \lim \inf_{n} C_{n}(x)/n$ [eff. Hausdorff]
- $Dim(x) = \limsup_{n} C_n(x)/n$ [eff. packing]
- For $A \subset (0,1)$ let $dim(A) = \max_{x \in A} dim(x)$ $Dim(A) = \max_{x \in A} Dim(x)$
- lacksquare locality paradox: how many / which elements are in A
- a point can have high effective dimension; a set of high (classical) dimension always contains a point of high effective dimension

- for $x \in (0,1)$ let $C_n(x)$ be the complexity of 2^{-n} -approximation to x.
- \longrightarrow dim(x) = $\liminf_n C_n(x)/n$ [eff. Hausdorff]
- \triangleright $Dim(x) = \limsup_{n} C_n(x)/n$ [eff. packing]
- For $A \subset (0,1)$ let $dim(A) = \max_{x \in A} dim(x)$ $Dim(A) = \max_{x \in A} Dim(x)$
- lacksquare locality paradox: how many / which elements are in A
- a point can have high effective dimension; a set of high (classical) dimension always contains a point of high effective dimension

- for $x \in (0,1)$ let $C_n(x)$ be the complexity of 2^{-n} -approximation to x.
- \blacktriangleright dim $(x) = \lim \inf_{n} C_{n}(x)/n$ [eff. Hausdorff]
- \triangleright $Dim(x) = \limsup_{n} C_n(x)/n$ [eff. packing]
- For $A \subset (0,1)$ let $dim(A) = \max_{x \in A} dim(x)$ $Dim(A) = \max_{x \in A} Dim(x)$
- lacksquare locality paradox: how many / which elements are in A
- a point can have high effective dimension; a set of high (classical) dimension always contains a point of high effective dimension

- for $x \in (0,1)$ let $C_n(x)$ be the complexity of 2^{-n} -approximation to x.
- \blacktriangleright dim $(x) = \lim \inf_{n} C_{n}(x)/n$ [eff. Hausdorff]
- \triangleright Dim $(x) = \limsup_{n} C_n(x)/n$ [eff. packing]
- For $A \subset (0,1)$ let $dim(A) = \max_{x \in A} dim(x)$ $Dim(A) = \max_{x \in A} Dim(x)$
- igwedge locality paradox: how many / which elements are in A
- a point can have high effective dimension; a set of high (classical) dimension always contains a point of high effective dimension

- for $x \in (0,1)$ let $C_n(x)$ be the complexity of 2^{-n} -approximation to x.
- \blacktriangleright dim $(x) = \lim \inf_{n} C_{n}(x)/n$ [eff. Hausdorff]
- ightharpoonup Dim $(x) = \lim \sup_{n} C_n(x)/n$ [eff. packing]
- For $A \subset (0,1)$ let $dim(A) = \max_{x \in A} dim(x)$ $Dim(A) = \max_{x \in A} Dim(x)$
- igwedge locality paradox: how many / which elements are in A
- a point can have high effective dimension; a set of high (classical) dimension always contains a point of high effective dimension

- for $x \in (0,1)$ let $C_n(x)$ be the complexity of 2^{-n} -approximation to x.
- \blacktriangleright dim $(x) = \lim \inf_{n} C_{n}(x)/n$ [eff. Hausdorff]
- ightharpoonup Dim $(x) = \lim \sup_{n} C_n(x)/n$ [eff. packing]
- For $A \subset (0,1)$ let $dim(A) = \max_{x \in A} dim(x)$ $Dim(A) = \max_{x \in A} Dim(x)$
- lacksquare locality paradox: how many / which elements are in A
- a point can have high effective dimension; a set of high (classical) dimension always contains a point of high effective dimension

- for $x \in (0,1)$ let $C_n(x)$ be the complexity of 2^{-n} -approximation to x.
- \blacktriangleright dim $(x) = \lim \inf_{n} C_{n}(x)/n$ [eff. Hausdorff]
- \triangleright Dim $(x) = \limsup_{n} C_n(x)/n$ [eff. packing]
- For $A \subset (0,1)$ let $dim(A) = \max_{x \in A} dim(x)$ $Dim(A) = \max_{x \in A} Dim(x)$
- lacksquare locality paradox: how many / which elements are in A
- a point can have high effective dimension; a set of high (classical) dimension always contains a point of high effective dimension

- relativizing: $dim^S(x)$, $Dim^S(x)$, $dim^S(A)$, $Dim^S(A)$
- point-to-set principle: $dim(A) = min_S dim^S(A)$ $Dim(A) = min_S Dim^S(A)$
- classical dimension == min_{oracle} max_{point} effective dimension
- opens a way to translate information inequalities into statements about dimensions
- for $A \subset [0,1] \times [0,1]$; projections A_1 and A_2

$$Dim(A) \leq Dim(A_1) + Dim(A_2)$$

- relativizing: $dim^S(x)$, $Dim^S(x)$, $dim^S(A)$, $Dim^S(A)$
- point-to-set principle: $dim(A) = min_S dim^S(A)$ $Dim(A) = min_S Dim^S(A)$
- classical dimension = $= \min_{\text{oracle}} \max_{\text{point}} \text{effective dimension}$
- opens a way to translate information inequalities into statements about dimensions
- for $A \subset [0,1] \times [0,1]$; projections A_1 and A_2

$$Dim(A) \leq Dim(A_1) + Dim(A_2)$$

- relativizing: $dim^S(x)$, $Dim^S(x)$, $dim^S(A)$, $Dim^S(A)$
- point-to-set principle: $dim(A) = min_S dim^S(A),$ $Dim(A) = min_S Dim^S(A)$
- classical dimension = $= \min_{\text{oracle}} \max_{\text{point}} \text{effective dimension}$
- opens a way to translate information inequalities into statements about dimensions
- for $A \subset [0,1] \times [0,1]$; projections A_1 and A_2

$$Dim(A) \leq Dim(A_1) + Dim(A_2)$$

- relativizing: $dim^S(x)$, $Dim^S(x)$, $dim^S(A)$, $Dim^S(A)$
- point-to-set principle: $dim(A) = min_S dim^S(A),$ $Dim(A) = min_S Dim^S(A)$
- classical dimension = $= \min_{\text{oracle}} \max_{\text{point}} \text{effective dimension}$
- opens a way to translate information inequalities into statements about dimensions
- for $A \subset [0,1] \times [0,1]$; projections A_1 and A_2

$$Dim(A) \leq Dim(A_1) + Dim(A_2)$$

- relativizing: $dim^S(x)$, $Dim^S(x)$, $dim^S(A)$, $Dim^S(A)$
- point-to-set principle: $dim(A) = min_S dim^S(A),$ $Dim(A) = min_S Dim^S(A)$
- classical dimension = $= \min_{\text{oracle}} \max_{\text{point}} \text{effective dimension}$
- opens a way to translate information inequalities into statements about dimensions
- for $A \subset [0,1] \times [0,1]$; projections A_1 and A_2

$$Dim(A) \leq Dim(A_1) + Dim(A_2)$$

- relativizing: $dim^S(x)$, $Dim^S(x)$, $dim^S(A)$, $Dim^S(A)$
- point-to-set principle: $dim(A) = min_S dim^S(A),$ $Dim(A) = min_S Dim^S(A)$
- classical dimension = $= \min_{\text{oracle}} \max_{\text{point}} \text{effective dimension}$
- opens a way to translate information inequalities into statements about dimensions
- ▶ for $A \subset [0,1] \times [0,1]$; projections A_1 and A_2

$$Dim(A) \leq Dim(A_1) + Dim(A_2)$$

- $A \subset [0,1]^3$, 2-dimensional projections A_{12} , A_{23} , A_{13} :

$$2\operatorname{Dim}(A) \leqslant \operatorname{Dim}(A_{12}) + \operatorname{Dim}(A_{13}) + \operatorname{Dim}(A_{23})$$

- $C(x_1) + C(x_1, x_2, x_3) \leq C(x_1, x_2) + C(x_1, x_3)$
- for $A \subset [0,1]^3$: if (for some u and v)

$$Dim(A_{12}) + Dim(A_{13}) \leqslant u + v$$

then A can be splitted into $A = A' \cup A''$ such that

$$\dim(A_1') \leqslant u, \quad \dim(A'') \leqslant u$$

- $A \subset [0,1]^3$, 2-dimensional projections A_{12} , A_{23} , A_{13} :

$$2\operatorname{Dim}(A)\leqslant \operatorname{Dim}(A_{12})+\operatorname{Dim}(A_{13})+\operatorname{Dim}(A_{23})$$

- $C(x_1) + C(x_1, x_2, x_3) \le C(x_1, x_2) + C(x_1, x_3)$
- for $A \subset [0,1]^3$: if (for some u and v)

$$Dim(A_{12}) + Dim(A_{13}) \leqslant u + v$$

then A can be splitted into $A = A' \cup A''$ such that

$$\dim(A_1') \leqslant u, \quad \dim(A'') \leqslant u$$

- $igwedge A \subset [0,1]^3$, 2-dimensional projections A_{12} , A_{23} , A_{13} :

$$2 \operatorname{Dim}(A) \leq \operatorname{Dim}(A_{12}) + \operatorname{Dim}(A_{13}) + \operatorname{Dim}(A_{23})$$

- $C(x_1) + C(x_1, x_2, x_3) \le C(x_1, x_2) + C(x_1, x_3)$
- for $A \subset [0,1]^3$: if (for some u and v)

$$Dim(A_{12}) + Dim(A_{13}) \leqslant u + v$$

then A can be splitted into $A = A^{'} \cup A^{''}$ such that

$$\dim(A_1') \leqslant u, \quad \dim(A'') \leqslant v$$

- $igwedge A \subset [0,1]^3$, 2-dimensional projections A_{12} , A_{23} , A_{13} :

$$2 \operatorname{Dim}(A) \leq \operatorname{Dim}(A_{12}) + \operatorname{Dim}(A_{13}) + \operatorname{Dim}(A_{23})$$

- $C(x_1) + C(x_1, x_2, x_3) \le C(x_1, x_2) + C(x_1, x_3)$
- for $A \subset [0,1]^3$: if (for some u and v)

$$Dim(A_{12}) + Dim(A_{13}) \leqslant u + v$$

then A can be splitted into $A = A^{'} \cup A^{''}$ such that

$$\dim(A_1) \leqslant u, \quad \dim(A'') \leqslant v$$

- $igwedge A \subset [0,1]^3$, 2-dimensional projections A_{12} , A_{23} , A_{13} :

$$2 \operatorname{Dim}(A) \leq \operatorname{Dim}(A_{12}) + \operatorname{Dim}(A_{13}) + \operatorname{Dim}(A_{23})$$

- $C(x_1) + C(x_1, x_2, x_3) \leq C(x_1, x_2) + C(x_1, x_3)$
- for $A \subset [0,1]^3$: if (for some u and v)

$$Dim(A_{12}) + Dim(A_{13}) \leqslant u + v$$

then A can be splitted into $A = A' \cup A''$ such that

$$\dim(A_1) \leqslant u, \quad \dim(A'') \leqslant v$$

New description of information inequalities

- Every true linear inequality for entropies/complexites can be translated into a (true) statement about classical Hausdorff and packing dimensions as described
- If a linear inequality is *not* true for entropies/complexities, the corresponding statement about dimensions is also false

New description of information inequalities

- Every true linear inequality for entropies/complexites can be translated into a (true) statement about classical Hausdorff and packing dimensions as described
- If a linear inequality is not true for entropies/complexities, the corresponding statement about dimensions is also false

New description of information inequalities

- Every true linear inequality for entropies/complexites can be translated into a (true) statement about classical Hausdorff and packing dimensions as described
- If a linear inequality is *not* true for entropies/complexities, the corresponding statement about dimensions is also false

THANKS!