
Complexity Classification of
Complex-Weighted
Counting Acyclic Constraint
Satisfaction Problems

Dr. Tomoyuki Yamakami

 Tomoyuki Yamakami 2023

July 28, 2023. 11:00-11:30 (GET). Batumi, Georgia (Online)

University of Fukui, Fukui, JAPAN

CiE 2023: informal talk

Synopsis of Today’s Talk

 This seminal talk concerns
• counting acyclic constraint satisfaction problems

(or #ACSPs).
 I will try to

• develop a proof technique to cope with #ACSPs.
 I will present

• two complete classifications of -valued #ACSPs.

 YouTube Search ↪ Tomoyuki Yamakami
 twitter ↪ tomoyamakami

Ciaoooo

1. CSPs
2. #CSPs
3. Acyclic CSPs
4. Complexity class LOGCFL
5. Acyclicity
6. Quick Examples
7. Constraint hypergraphs
8. #ACSPs

I. Counting CSPs

Constraint Satisfaction Problems (CSPs)

• Our subject is constraint satisfaction problems (or
CSPs).

• CSPs with Boolean domains are briefly called Boolean
CSPs.

• Typical Boolean CSPs include 3SAT.

• Schaefer (1978) considered CSPs with Boolean
domains and proved the dichotomy theorem (or the
dichotomy classification) for them.

• (Claim) Any CSP with Boolean domains is either in P or
NP-complete.

• In the rest of this talk, we are focused on Boolean CSPs.

Counting CSPs (#CSPs)

• As a variant of CSPs, we focus on counting (Boolean)
CSPs (or succinctly, #CSPs).

• Creignou and Herman (1996) proved a complete
classification of #CSPs with {0,1}-valued constraint
functions (or unweighted #CSPs).

• Dyer, Goldberg, and Jerrum (2009) presented a
classification for nonnegative real weighted #CSPs.

• Cai, Lu, and Xia (2014) obtained a classification for
complex-weighted #CSPs.

• Dyer, Goldberg, and Jerrum (2010) studied randomized
approximate counting.

• Yamakami (2012) gave a randomized approximation
classification for complex-weighted #CSPs.

Acyclic CSPs

• Gottlob, Leone, and Scarcello (2001) studied the acyclic
version of CSPs, called ACSPs, in connection to
database theory.

• They proved that the generic problem ACSP (not
necessarily limited to Boolean) is complete for LOGCFL.

• In the next two slides, we will see the precise definitions
of “LOGCFL” and “acyclicity”.

Complexity Class LOGCFL

• A decision problem (or equivalently, a language) L is in
LOGCFL if there is a two-way auxiliary pushdown
automaton (or an aux-2npda) M such that, for any input x,
1. xL  there exists an accepting computation path of

M on x (or x is accepted by M), and
2. M runs in polynomial time using logarithmic work space

(or log space) on all inputs.

• L  NL  LOGCFL  P  NP

• LOGCFL = co-LOGCFL

LOGCFL = co-LOGCFL
NL=co-NL

P

NP

Acyclicity (or -Acyclicity)

• A hypergraph G is of the form (V,E) with a finite set V of
vertices and a set E of hyperedges (i.e., subsets of V).

• The empty hypergraph has no vertex.
• A hypergraph G is acyclic  after applying the

following actions (i)-(ii) finitely many times, G becomes
the empty hypergraph.
i. Remove vertices that appear in at most one hyperedge.
ii. Remove hyperedges that are either empty or contained in

other hyperedges.

(i) (ii)

Quick Examples

cyclic hypergraph

acyclic hypergraph

cyclic hypergraph

acyclic hypergraph

Constraint Hypergraphs

• Consider a #CSP instance I = (Var,C), where Var =
{ vi }i[t] is a set of Boolean variables and C = { Ci } i[s] is
a set of -valued constraints of the form

Ci = (fi, (vi1,vi2,...,vik))
for any i[s].

• We associate it with a labeled hypergraph GI = (VI,EI),
where
VI = Var, and
EI = { { v1,v2,...,vk } | (f,(v1,v2,...,vk))  C } whose

hyperedge { v1,v2,...,vk } has f as its label.
• We call GI the constraint hypergraph of I.
• A #CSP instance I is acyclic  GI is acyclic

#ACSPs

• Let F be any set of -valued constraint functions with
Boolean domains.

• F-restricted counting acyclic constraint satisfaction
problem (or #ACSP(F))
 instance: I = (Var,C) with a set Var = { vi }i[t] of

Boolean variables and a set C = { Ci } i[s] of -valued
constraints Ci = (fi, (vi1,vi2,...,vik)) s.t. fi  F{ 0,1 }
for any i[s] and I is acyclic

 output: count(I) = i[s] fi((vi1),(vi2),...,(vik)),
where :Var{0,1}

x1

x2

x3

x4

f2(x1,x4,x2)

f3(x1,x3)

f4(x4,x3,x2)

f5(x4)

f1(x2,x1)

𝑐𝑜𝑢𝑛𝑡ሺ𝐼ሻ

ൌ෍𝑓ଵ 𝜎ሺ𝑥ଶሻ, 𝜎ሺ𝑥ଵሻ 𝑓ଶ 𝜎ሺ𝑥ଵሻ, 𝜎ሺ𝑥ସሻ, 𝜎ሺ𝑥ଶ ሻ𝑓ଷ 𝜎ሺ𝑥ଵሻ, 𝜎ሺ𝑥ଷሻ
ఙ

𝑓ସሺ𝜎ሺ𝑥ସሻ, 𝜎ሺ𝑥ଷሻ, 𝜎ሺ𝑥ଶሻሻ𝑓ହሺ𝜎ሺ𝑥ସሻሻ

𝜎: 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ → ሼ0,1ሽ

A #ACSP instance: I = (Var, C) with
Var = { x1, x2, x3, x4 } and
C = { (f1,(x2,x1)), (f2,(x1,x4,x2)), (f3,(x1,x3)), (f4,(x4,x3,x2)), (f5,(x4)) }

(x1)

(x2)

(x3)

(x4)

1. #LOGCFL and #LOGCFLℂ
2. Examples
3. Logspace reductions
4. #LOGCFL-completeness

II. #LOGCFL and #LOGCFLℂ

#LOGCFL and #LOGCFLℂ

• We discuss a counting version of LOGCFL.

• #LOGCFL consists of all counting problems f that satisfy
the following condition:
 there are an aux-2npda M s.t., for any x, f(x) equals

the total number of accepting paths of M on the input
string x.

• We can expand #LOGCFL to #LOGCFLℂ by treating
complex numbers as individual “symbolic” objects.

• This is a common way of defining Pℂ, NPℂ, FPℂ, and #Pℂ
induced directly from P, NP, FP, and #P.

 Refer to, e.g., Arora-Barak’s textbook (Computational Complexity, 2009).

Examples

• We see a few examples of #LOGCFL problems.

• Ranking of 1dpda problem (or RANK1dpda)
 instance: a one-way deterministic pushdown automaton

(or a 1dpda) M and an input string x { 0,1 }*.
 output: the rank of x in L(M).

• Counting SAC1 problem (or #SAC1P)
 instance: an encoding C of a leveled semi-unbounded

Boolean circuit of size at most n and of depth at most
log(n) with n input bits and an input string x { 0,1 }n.

 output: the total number of accepting computation
subtrees of C on the input x.

The number of strings in L(M) that
are lexicographically smaller than x

Logspace Reductions

• The logarithmic-space reducibility is commonly used for
the NL-completeness of languages.

• We expand it to reductions between functions.

• Let f,g be any two functions.
• f is logspace reducible to g (f L g) 

 h FL (polynomially bounded) x* [f(x) = g(h(x))]

• A function f is #LOGCFL-hard (under logspace
reductions)  g#LOGCFL [g L f].

• A function f is #LOGCFL-complete (under logspace
reductions)  f is #LOGCFL-hard and f is in #LOGCFL.

#LOGCFL-Completeness

• Lemma
1) #SAC1P is #LOGCFL-complete.
2) RANK1dpda is #LOGCFL-complete. (Vinay (1991))

1. How to express constraint functions
2. Counting acyclic 2CNF satisfiability problem
3. ED, NZ, and IM
4. Useful facts

III. Various Constraint Functions

How to Express Constraint Functions I

• We assume the standard lexicographic order on {0,1}k.
• Let f: {0,1}k  be any constraint function.
• We express this f as a k-tuple (f(0k),f(0k-11),...,f(1k)).
 If k=1, then f is expressed as (f(0),f(1)).
 If k=2, then f is expressed as (f(00),f(01),f(10),f(11)).

• f is symmetric  :[k][k] permutation
x1,x2,..,xk{0,1} [f(x1,x2,...,xk) = f(x(1),x(2),...,x(k))]

• For a symmetric constraint function f, f is expressed as
[a0,a1,a2,...,ak], where ai = f(x) for any x{0,1}k

containing exactly i 1s.
• E.g., consider f(x) = the number of 1s in x (mod 2).
 f = (0,1,1,0,1,0,0,1) and f = [0,1,0,1]

How to Express Constraint Functions II

• Examples
ANDk = [0,0,0,...,0,1] (k zeros)
ORk = [0,1,1,...,1] (k ones)
NANDk = [1,1,...,1,0] (k ones)
EQk = [1,0,0,...,0,1] (k-1 zeros)
XOR = NEQ2 = [0,1,0]
 Implies = (1,1,0,1) “x  y”
RImplies = (1,0,1,1) “reverse implies: y  x”
0 = [1,0] and 1 = [0,1] (special unary functions)

• Equalities
XOR(x,y) = OR2(x,y)NAND2(x,y)
EQ2(x,y) = Implies(x,y)Rimplies(x,y)

Counting Acyclic 2CNF Satisfiability Problem

• A Boolean formula  is acyclic  its associated
constraint hypergraph G is acyclic.

• Counting acyclic 2CNF satisfiability problem (or #Acyc-
2SAT)
 instance: an acyclic 2CNF Boolean formula 
 output: the total number of satisfying assignments of



• Lemma
1) #Acyc-2SAT L #ACSP(Implies)
2) #ACSP(-)(Implies) L #Acyc-2SAT

Implies = (1,1,0,1)

2CNF:   (x1x2)(x1x3)(x2x3)

#ACSP(-)(F) means that unary constraints in
use are limited to [0,1], [1,0], [0,0], and [1,1].

ED, NZ, and IM

• We define three important sets of constraint functions.

• ED = the set of all constraint functions that are products
of some of the following functions:

unary functions, EQ2, and XOR.

• NZ = the set of all non-zero constraint functions.

• IM = the set of all constraint functions, not in NZ, which
are products of some of unary functions and “Implies”.

• Examples
 AND2ED, because AND2(x,y) = EQ2(x,y)1(x)
 EQ3ED, because EQ3(x,y,z) = EQ2(x,y)EQ2(y,z)
 EQ2IM, because EQ2(x,y) = Implies(x,y)Implies(y,x)

Useful Facts

• We can prove the following statements.

1) #SAC1P L #ACSP(OR2,XOR)

2) F  ED [#ACSP(F) is in FLℂ
3) f  ED [#ACSP(OR2) L #ACSP(f)]

4) f  IMED [#ACSP(OR2,XOR) L #ACSP(f)]

• Theorem
For any constraint set F, #ACSP(F) is in #LOGCFLℂ.

1. Trichotomy classification
2. Dichotomy classification
3. Acyclic T-constructibility

IV. Two Classification Results

Trichotomy Classification

• We allow the free use of unary constraints as part of
inputs.

• We then obtain the following trichotomy classification of
#ACSPs.

• Under the free use of unary constraints, given any
#ACSP f, the following statements hold.
1) If all constraint functions of f are in ED, then f is in

FLℂ
2) Otherwise, if all constraints of f are in IM, then f is in

#Acyc-2SAT-hard.
3) Otherwise, f is #LOGCFL-hard.

Dichotomy Classification

• Next, we consider the case where the free use of XOR
is allowed together with unary constraints.

• In this particular case, we can obtain the following
dichotomy classification of #ACSPs.

• Under the free use of XOR and unary constraints, given
any #ACSP f, the following statements hold.
1) If all constraint functions of f are in ED, then f is in

FLℂ
2) Otherwise, f is #LOGCFL-hard.

Acyclic T-Constructibility

• To prove the aforementioned classification results, we
need to develop a crucial technical tool, called acyclic T-
constructibility or AT-constructibility.

• This is an adaptation of T-constructibility notion
introduced by Yamakami (2012, I&C).

• Due to the time constraint, we omit the detailed
description of AT-constructibility in this talk.

1. Open problems

V. Open Problems

Open Problems

• Numerous questions have left unsolved in this study.
• We list a few such questions below.

1. Find a complete classification of #ACSPs when we
place a restriction on the choice of weight types (such
as nonnegative real numbers).

2. Find a randomized approximate classification of
#ACSPs.

3. What is the exact complexity of #Acyc-2SAT?

4. Is it true that #L  #LOGCFL or even FL  #LOGCFL?

Q & A
I’m happy to take your question!

END

