CiE 2023: informal talk

Complexity Classification of Complex-Weighted Counting Acyclic Constraint Satisfaction Problems

July 28, 2023. 11:00-11:30 (GET). Batumi, Georgia (Online)

Dr. Tomoyuki Yamakami University of Fukui, Fukui, JAPAN

© Tomoyuki Yamakami 2023

Synopsis of Today's Talk

This seminal talk concerns

- counting acyclic constraint satisfaction problems (or #ACSPs).
- I will try to
 - develop a proof technique to cope with #ACSPs.
- I will present
 - two complete classifications of C-valued #ACSPs.

- ➤ YouTube Search ↔ Tomoyuki Yamakami
- ➤ twitter ↔ tomoyamakami

I. Counting CSPs

- 1. CSPs
- 2. #CSPs
- 3. Acyclic CSPs
- 4. Complexity class LOGCFL
- 5. Acyclicity
- 6. Quick Examples
- 7. Constraint hypergraphs
- 8. #ACSPs

Constraint Satisfaction Problems (CSPs)

- Our subject is constraint satisfaction problems (or CSPs).
- CSPs with Boolean domains are briefly called Boolean CSPs.
- Typical Boolean CSPs include 3SAT.
- Schaefer (1978) considered CSPs with Boolean domains and proved the dichotomy theorem (or the dichotomy classification) for them.
- (Claim) Any CSP with Boolean domains is either in P or NP-complete.
- In the rest of this talk, we are focused on Boolean CSPs.

Counting CSPs (#CSPs)

- As a variant of CSPs, we focus on counting (Boolean)
 CSPs (or succinctly, #CSPs).
- Creignou and Herman (1996) proved a complete classification of #CSPs with {0,1}-valued constraint functions (or unweighted #CSPs).
- Dyer, Goldberg, and Jerrum (2009) presented a classification for nonnegative real weighted #CSPs.
- Cai, Lu, and Xia (2014) obtained a classification for complex-weighted #CSPs.
- Dyer, Goldberg, and Jerrum (2010) studied randomized approximate counting.
- Yamakami (2012) gave a randomized approximation classification for complex-weighted #CSPs.

Acyclic CSPs

- Gottlob, Leone, and Scarcello (2001) studied the acyclic version of CSPs, called ACSPs, in connection to database theory.
- They proved that the generic problem ACSP (not necessarily limited to Boolean) is complete for LOGCFL.
- In the next two slides, we will see the precise definitions of "LOGCFL" and "acyclicity".

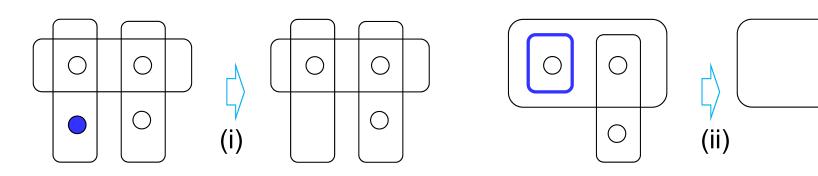
Complexity Class LOGCFL

- A decision problem (or equivalently, a language) L is in LOGCFL if there is a two-way auxiliary pushdown automaton (or an aux-2npda) M such that, for any input x,
 - 1. $x \in L \leftrightarrow$ there exists an accepting computation path of M on x (or x is accepted by M), and
 - 2. M runs in polynomial time using logarithmic work space (or log space) on all inputs.



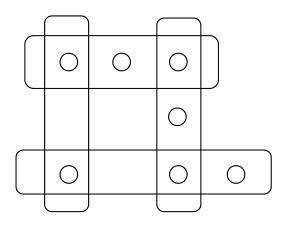
Acyclicity (or α -Acyclicity)

- A hypergraph G is of the form (V,E) with a finite set V of vertices and a set E of hyperedges (i.e., subsets of V).
- The empty hypergraph has no vertex.
- A hypergraph G is acyclic following actions (i)-(ii) finitely many times, G becomes the empty hypergraph.
 - i. Remove vertices that appear in at most one hyperedge.
 - ii. Remove hyperedges that are either empty or contained in other hyperedges.

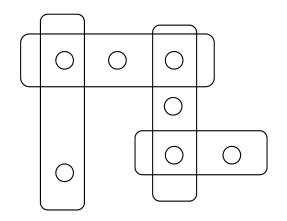


Quick Examples

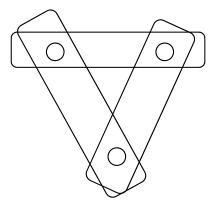
cyclic hypergraph



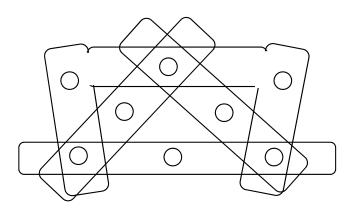
acyclic hypergraph



cyclic hypergraph



acyclic hypergraph



Constraint Hypergraphs

Consider a #CSP instance I = (Var,C), where Var =
 {v_i}_{i∈[t]} is a set of Boolean variables and C = {C_i}_{i∈[s]} is
 a set of C-valued constraints of the form

 $C_i = (f_i, (v_{i1}, v_{i2}, ..., v_{ik}))$ for any $i \in [s]$.

• We associate it with a labeled hypergraph $G_I = (V_I, E_I)$, where

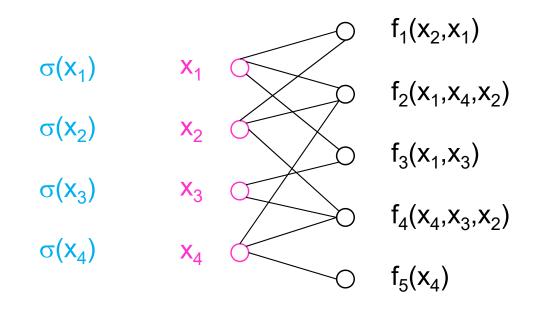
 $> V_1 = Var, and$

- $➤ E_1 = \{ \{ v_1, v_2, ..., v_k \} | (f, (v_1, v_2, ..., v_k)) \in C \} whose hyperedge \{ v_1, v_2, ..., v_k \} has f as its label.$
- We call G_I the constraint hypergraph of I.
- A #CSP instance I is acyclic \Leftrightarrow G_I is acyclic

#ACSPs

- Let F be any set of C-valued constraint functions with Boolean domains.
- F-restricted counting acyclic constraint satisfaction problem (or #ACSP(F))
 - ➤ instance: I = (Var,C) with a set Var = { v_i }_{i∈[t]} of Boolean variables and a set C = { C_i }_{i∈[s]} of C-valued constraints C_i = (f_i, (v_{i1},v_{i2},...,v_{ik})) s.t. f_i ∈ F∪{ Δ₀,Δ₁ } for any i∈[s] and I is acyclic
 - ➤ output: count(I) = $\sum_{\sigma} \prod_{i \in [s]} f_i(\sigma(v_{i1}), \sigma(v_{i2}), ..., \sigma(v_{ik}))$, where σ :Var→{0,1}

A #ACSP instance: I = (Var, C) with Var = { x₁, x₂, x₃, x₄ } and C = { (f₁,(x₂,x₁)), (f₂,(x₁,x₄,x₂)), (f₃,(x₁,x₃)), (f₄,(x₄,x₃,x₂)), (f₅,(x₄)) }



 $\sigma{:}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \rightarrow \{0, 1\}$

count(I)

 $= \sum_{\sigma} f_1(\sigma(x_2), \sigma(x_1)) f_2(\sigma(x_1), \sigma(x_4), \sigma(x_2)) f_3(\sigma(x_1), \sigma(x_3)) f_4(\sigma(x_4), \sigma(x_3), \sigma(x_2)) f_5(\sigma(x_4))$

II. #LOGCFL and #LOGCFL $_{\mathbb{C}}$

- 1. #LOGCFL and $\#LOGCFL_{\mathbb{C}}$
- 2. Examples
- 3. Logspace reductions
- 4. #LOGCFL-completeness

#LOGCFL and **#LOGCFL** $_{\mathbb{C}}$

- We discuss a counting version of LOGCFL.
- #LOGCFL consists of all counting problems f that satisfy the following condition:

there are an aux-2npda M s.t., for any x, f(x) equals the total number of accepting paths of M on the input string x.

- We can expand #LOGCFL to #LOGCFL_c by treating complex numbers as individual "symbolic" objects.
- This is a common way of defining $P_{\mathbb{C}}$, $NP_{\mathbb{C}}$, $FP_{\mathbb{C}}$, and $\#P_{\mathbb{C}}$ induced directly from P, NP, FP, and #P.
- □ Refer to, e.g., Arora-Barak's textbook (Computational Complexity, 2009).

Examples

- We see a few examples of #LOGCFL problems.
- Ranking of 1dpda problem (or The number of strings in L(M) that are lexicographically smaller than x are lexicographically smaller than x (or a 1dpda) M and an input string x ∈ { 0,1 }*.

 \succ output: the rank of x in L(M).

- Counting SAC¹ problem (or #SAC1P)
 - ➢ instance: an encoding ⟨C⟩ of a leveled semi-unbounded Boolean circuit of size at most n and of depth at most log(n) with n input bits and an input string x ∈{ 0,1 }ⁿ.
 - output: the total number of accepting computation subtrees of C on the input x.

Logspace Reductions

- The logarithmic-space reducibility is commonly used for the NL-completeness of languages.
- We expand it to reductions between functions.
- Let f,g be any two functions.
- f is logspace reducible to g (f ≤^L g) ⇔
 ∃ h∈ FL (polynomially bounded) ∀x∈Σ* [f(x) = g(h(x))]
- A function f is #LOGCFL-hard (under logspace reductions) ⇔ ∀g∈#LOGCFL [g ≤^L f].
- A function f is #LOGCFL-complete (under logspace reductions) ⇔ f is #LOGCFL-hard and f is in #LOGCFL.

#LOGCFL-Completeness

- Lemma
 - 1) #SAC1P is #LOGCFL-complete.
 - 2) RANK_{1dpda} is #LOGCFL-complete. (Vinay (1991))

III. Various Constraint Functions

- 1. How to express constraint functions
- 2. Counting acyclic 2CNF satisfiability problem
- 3. ED, NZ, and IM
- 4. Useful facts

How to Express Constraint Functions I

- We assume the standard lexicographic order on {0,1}^k.
- Let f: $\{0,1\}^k \to \mathbb{C}$ be any constraint function.
- We express this f as a k-tuple (f(0^k),f(0^{k-1}1),...,f(1^k)).
 If k=1, then f is expressed as (f(0),f(1)).
 If k=2, then f is expressed as (f(00),f(01),f(10),f(11)).
- f is symmetric $\Leftrightarrow \forall \pi:[k] \rightarrow [k]$ permutation $\forall x_1, x_2, \dots, x_k \in \{0, 1\} [f(x_1, x_2, \dots, x_k) = f(x_{\pi(1)}, x_{\pi(2)}, \dots, x_{\pi(k)})]$
- For a symmetric constraint function f, f is expressed as
 [a₀,a₁,a₂,...,a_k], where a_i = f(x) for any x∈{0,1}^k
 containing exactly i 1s.
- E.g., consider f(x) = the number of 1s in x (mod 2).
 ▶ f = (0,1,1,0,1,0,0,1) and f = [0,1,0,1]

How to Express Constraint Functions II

• Examples

> XOR(x,y) = $OR_2(x,y)NAND_2(x,y)$ > $EQ_2(x,y)$ = Implies(x,y)Rimplies(x,y)

Counting Acyclic 2CNF Satisfiability Problem

- A Boolean formula φ is acyclic \Leftrightarrow its associated constraint hypergraph G_{φ} is a $2CNF: \varphi \equiv (x_1 \lor x_2) \land (x_1 \lor \neg x_3) \land (\neg x_2 \lor x_3)$
- Counting acyclic 2CNF satisfia bility problem (or #Acyc-2SAT)
 - instance: an acyclic 2CNF Boolean formula φ
 - output: the total number of satisfying assignments of

#ACSP⁽⁻⁾(F) means that unary constraints in use are limited to [0,1], [1,0], [0,0], and [1,1].

Implies = (1, 1, 0, 1)

- 1) #Acyc-2SAT ≤^L #ACSP(Implies)
- 2) $\#ACSP^{(-)}(Implies) \leq^{L} \#Acyc-2SAT$

ED, NZ, and IM

- We define three important sets of constraint functions.
- ED = the set of all constraint functions that are products of some of the following functions: unary functions, EQ₂, and XOR.
- NZ = the set of all non-zero constraint functions.
- IM = the set of all constraint functions, not in NZ, which are products of some of unary functions and "Implies".
- Examples
 - > AND₂ \in ED, because AND₂(x,y) = EQ₂(x,y) $\Delta_1(x)$
 - \geq EQ₃ \in ED, because EQ₃(x,y,z) = EQ₂(x,y)EQ₂(y,z)
 - \geq EQ₂ \in IM, because EQ₂(x,y) = Implies(x,y)Implies(y,x)

Useful Facts

- We can prove the following statements.
- 1) #SAC1P $\leq^{L} \#$ ACSP(OR₂,XOR)
- 2) $\forall F \subseteq ED \ [\#ACSP(F) \text{ is in } FL_{\mathbb{C}} \]$
- 3) $\forall f \notin ED [#ACSP(OR_2) \leq^{L} #ACSP(f)]$
- 4) $\forall f \notin IM \cup ED [#ACSP(OR_2, XOR) \leq^{L} #ACSP(f)]$
- Theorem

For any constraint set F, #ACSP(F) is in $\#LOGCFL_{\mathbb{C}}$.

IV. Two Classification Results

- 1. Trichotomy classification
- 2. Dichotomy classification
- 3. Acyclic T-constructibility

Trichotomy Classification

- We allow the free use of unary constraints as part of inputs.
- We then obtain the following trichotomy classification of #ACSPs.
- Under the free use of unary constraints, given any #ACSP f, the following statements hold.
 - 1) If all constraint functions of f are in ED, then f is in $FL_{\mathbb{C}}$.
 - 2) Otherwise, if all constraints of f are in IM, then f is in #Acyc-2SAT-hard.
 - 3) Otherwise, f is #LOGCFL-hard.

Dichotomy Classification

- Next, we consider the case where the free use of XOR is allowed together with unary constraints.
- In this particular case, we can obtain the following dichotomy classification of #ACSPs.
- Under the free use of XOR and unary constraints, given any #ACSP f, the following statements hold.
 - 1) If all constraint functions of f are in ED, then f is in $FL_{\mathbb{C}}$.
 - 2) Otherwise, f is #LOGCFL-hard.

Acyclic T-Constructibility

- To prove the aforementioned classification results, we need to develop a crucial technical tool, called acyclic Tconstructibility or AT-constructibility.
- This is an adaptation of T-constructibility notion introduced by Yamakami (2012, I&C).
- Due to the time constraint, we omit the detailed description of AT-constructibility in this talk.

V. Open Problems

1. Open problems

Open Problems

- Numerous questions have left unsolved in this study.
- We list a few such questions below.
- 1. Find a complete classification of #ACSPs when we place a restriction on the choice of weight types (such as nonnegative real numbers).
- 2. Find a randomized approximate classification of #ACSPs.
- 3. What is the exact complexity of **#Acyc-2SAT**?
- 4. Is it true that $\#L \neq \#LOGCFL$ or even $FL \neq \#LOGCFL$?

Thank you for listening

I'm happy to take your question!

