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Computable structures

I A structure A is computable if the domain |A| ⊆ N is

computable and all relations and operations from A are

computable.

I A computable presentation of a countable structure A is

any computable isomorphic copy of A.
I (N,+1,P) has a computable copy i� P is computable.

I All operations can be equivalently transformed into

ralations, e.g., +1 can be replaced by the successor relation.
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Primitive recursive structures

I A structure A is primitive recursive if the domain |A| is
primitive recursive and all relations and operations in A are

primitive recursive.

I A primitive recursive presentation of a countable structure

A is any primitive recursive isomorphic copy of A.
I (from Kleene's Normal Form). Every computable structure

in a relational language has a primitive recursive

presentation.

I (Alaev, 2016). Every computable locally �nite structure in

a relational language has a primitive recursive presentation.

I (N,+1,P) has a primitive recursive presentation i� P is

primitive recursive.
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Punctual structures

I A structure A is punctual if A is �nite or |A| = N and all

relations and operations in A are primitive recursive.

I A punctual presentation of a countable structure A is any

punctual isomorphic copy of A.
I Every primitive recursive structure which is not locally

�nite has a punctual recursive presentation.

I (KMN, 2017). There is a computable graph without a

punctual presentation, while it has a primitive recursive

one.

I (N,+1,P) has a punctual presentation i� P is primitive

recursive.
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Sets coded into the structures

Let P is arbitrary, and X is a Turing oracle.

I (N,+1,P) has an X -computable copy i� P ≤T X .

I The same is true if we replace +1 by the successor relation.

I (Ash, Knight, 2000). Suppose

A has an X -computable copy =⇒ P ≤T X

for every X . Then for some �xed parameters ~a ∈ A there

are computable mappings into quanti�er-free formulae

n 7→ Φn and n 7→ Ψn such that

n ∈ P ⇐⇒ A |= (∃~x)Φn(~x , ~a);

n /∈ P ⇐⇒ A |= (∃~x)Ψn(~x , ~a).
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PR-reducibility

I We write g ≤PR f if g can be obtained from o(x), s(x), In
m

and f by composition and primitive recursion.

We write

f ≡PR g if f ≤PR g and g ≤PR f .
I In general, f 6≡PR graph(f ). But if f ≤PR X for a set X then

f is dominated by a primitive recursive function, so that

f ≡PR graph(f ). Thus, the sets form a proper ideal in the

PR-degrees of functions.

I A structure A is f -punctual if A is �nite or |A| = N and all

relations and operations in A are ≤PR f . An f -punctual
presentation of a countable structure A is any f -punctual
isomorphic copy of A.
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Sets PR-coded into the structures

Let P is arbitrary, and f is a PR-oracle.

I (N,+1,P) has an f -punctual copy i� P ≤PR f .
I The same is true if we consider the locally �nite structure

(N, ◦,P), where x ◦ y = max(x + 1, y).
I (KMM, 2021). Suppose

A has an f -punctual copy =⇒ P ≤PR f

for every f . Then for some �xed parameters ~a ∈ A there are

primitive recursive mappings into quanti�er-free formulae

n 7→ Φn and n 7→ Ψn such that for every tuple ~x of

pairwisely distinct elements

n ∈ P ⇐⇒ A |= Φn(~x , ~a);

n /∈ P ⇐⇒ A |= Ψn(~x , ~a).
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1. Are there examples among relational structures?

2. Can we code arbitrary functions, not only the sets?
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Question 1

I Are there examples among relational structures?

I No.

I Because Ramsey's Theorem says that every in�nite

relational structure contains an in�nite substructure

isomorphic to a quanti�er-free interpretation in (N, <)
(which is obviously primitive recursive).
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Question 2

I Can we code arbitrary functions, not only the sets?

I No.

I Because every f -punctual structure can be isomorphically

transformed into an f -punctual structure whose operations
are primitively recursively bounded , i.e., there is a set

X ≤PR f such that the structure has an X -punctual

presentation.
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Turing degree spectra

I The Turing degree spectrum SpT (A) is the collection of all

sets X such that A has an X -computable presentation.

I SpT (N,+1,P) = {X : P ≤T X}.
I (Folklore). If P |T Q then the collection

{X : P ≤T X} ∪ {X : Q ≤T X} is not a Turing degree

spectrum.
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Spectra of Slaman-Wehner type

I (Slaman, Wehner, 1998). The collection {X : X 6≤T ∅} is the
Turing degree spectrum of a structure.

I (K, 2008). If A is c.e. then the collection {X : X 6≤T A} is
the Turing degree spectrum of a structure. Unions of

�nitely many such collections again form degree spectra.

I (AKKLMM, 2016). The collection {X : X 6≤T ∅′′} is not a
Turing degree spectra.
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The idea of the Wehner's proof

I We can code into a structure the family of �nite sets

W = {{n} ⊕ F : F 6= ϕn},

where ϕn is the n-th partially computable function.

I The family W has an X -computable enumeration if and

only if X 6≤T ∅.
I Indeed, W has no computable enumeration by Recursion

Theorem. If X 6≤T ∅ we can use X as a sample to extend

every unsucessfull guess F 6= ϕn.

I Some modi�cation of the family gives the degree spectrum

of the hyperimmune degrees (CK, 2010).
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PR-degree spectra

I The PR-degree spectrum SpPR(A) is the collection of all

functions f such that A has an f -punctual presentation.

I SpPR(N,+1,P) = {f : P ≤PR f}.
I (Folklore). If P |PR Q then the collection

{f : P ≤PR f} ∪ {f : Q ≤PR f} is not a PR-degree spectrum.

I (Set Basis Property). If f ∈ SpPR(A) then X ∈ SpPR(A) for
some X ≤PR f .
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Set Basis Property for {f : f 6≤PR ∅}

I (Kristiansen, 1996). If f 6≤PR ∅ then X 6≤PR ∅ for some

X ≤PR f .

I Indeed, if graph(f ) 6≤PR ∅ we are done. If graph(f ) ≤PR ∅
then f is not dominated by primitive recursive functions, so

that we can use a �hyperimmune-permitting-like� argument.

I Note that the proof can be made uniform.
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Punctual families

I A countable family F ⊆ 2N is punctual if there is a

{0,1}-valued primitive recursive function p such that

X ∈ F ⇐⇒ (∃i)(∀x)[x ∈ X ↔ p〈i , x〉 = 1]

for all X .

I For a function f a countable family F ⊆ 2N is f -punctual if
there is a {0,1}-valued function p ≤PR f such that

X ∈ F ⇐⇒ (∃i)(∀x)[x ∈ X ↔ p〈i , x〉 = 1]

for all X .
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Coding families

I For a countable family F ⊆ 2N de�ne the algebraic

structure A(F) in the language {r , s, I} on the domain

F × N× N such that the unary operations r and s are

de�ned by

r(X , x , y) = (X ,0, y);

s(X , x , y) = (X , x + 1, y);

and the unary predicate I is de�ned by

I(X , x , y)↔ x ∈ X .

I A countable family F ⊆ 2N is f -punctual if and only if

f ∈ SpPR(A(F)).
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An analogue of the Wehner's family

I Let pn is the n-th primive recursive function.

Then the

family of �nite sets

V = {{n} ⊕ F : F 6= pn}

is punctual.

I Just because we can start to enumerate the sets {n} ⊕ F
with F (i) 6= pn(i) after the value pn(i) become computed.
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The correct analogue of the Wehner's family

I The family of �nite sets

V = {{n} ⊕ F : F 6= pϕn(n)}

is f -punctual if and only if f 6≤PR ∅.
I Indeed, if V is punctual then for every n we can

computably �nd an s(n) such that ps(n) 6= pϕn(n). But then

s(n) 6= ϕn(n). A contradiction.

I If X 6≤PR ∅ we can use X as a sample to extend every

unsucessfull guess F 6= pϕn(n).

I Now it is enough to apply Set Basis Property for

{f : f 6≤PR ∅}.
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PR-Spectra of Slaman-Wehner type

I The collection {f : f 6≤PR ∅} is the PR-degree spectra of a

structure.

I If graph(g) is primitive recursive then the collection

{f : f 6≤PR g} is also a PR-degree spectra.

I Let h be the Ackerman's function, Ph
n be the n-th set

≤PR h, Ph = ⊕nPh
n . Then the collection {f : f 6≤PR Ph} has

no Set Basis Property, and so is not a PR-degree spectra.
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Open questions

I For which g the collection {f : f 6≤PR g} is a PR-degree

spectra? E.g, the collection {f : f 6≤PR P}, where P = ⊕nPn.

I If graph(g) is primitive recursive then the collection

{f : f 6≤PR g} is also a PR-degree spectra.

I The T -degree spectra are closed under jumps and

jump-inversions, so we have collections of the high degrees

{X : ∅′′ ≤T X ′} and of the non-low degrees {X : X ′ 6≤T ∅′}.
Are there PR-analogues of these?
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Thank you!
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