Computability in Europe 2023
Special session on Proof Theory

0 is for Dialectica

Marie Kerjean

CNRS & LIPN, Université Sorbonne Paris Nord

Work in collaboration with Pierre-Marie Pédrot

UNIVERSITE

SNORD

1/1

Godel’s Dialectica Transformation

» Godel Dialectica transformation [1958] : a translation from intuitionistic
arithmetic to a finite type extension of primitive recursive arithmetic.

A~ Fu: W(A), Y : C(A), AP[u, z]

> De Paiva [1991]: the linearized Dialectica translation operates on Linear
Logic (types) and A-calculus (terms).

> Pedrot [2014] A computational Dialectica translation preserving
[B-equivalence, via the introduction of an ”abstract multiset constructor”
on types on the target.

2/1

Godel’s Dialectica

L (FAGY =@3yv) (zw) [A Y, 2, £) A B (v, w, 0)].

2. (F\/ G) = (3yvt) (zw) [t=0 A A (3, 2, 2)-\/-t=1 A B (0, w, u)].
3. [(5)F = @Y) (s9) A (Y (9), 5 7).

4. [@S) T = @sy) DAY, 2 2).

5 (Fo Q) = SEIVZ) (yw) [A (_y, Z (yw),) D B (V(y), w, u)].
6. ('FY =@2) @) 7AW 2),2).

@ Kurt Godel (1958). Uber eine bisher noch nicht beniitzte Erweiterung des finiten
Standpunktes. Dialectica.

3/1

Godel’s Dialectica

» Validates semi-classical axioms:

» Markov’s principle : ——3xA — 3z A when A is decidable.
» Independant of premises : (A — 3zB) — (Jz.(A — B))

» Numerous applications :

» Soudness results
» Proof mining

A further distinguishing feature of the D-interpretation is its nice behavior with
respect to modus ponens. In contrast to cut-elimination, which entails a global (and
computationally infeasible) transformation of proofs, the D-interpretation extracts
constructive information through a purely local procedure: when proofs of ¢ and
@ — 1 are combined to yield a proof of ¢, witnessing terms for the antecedents of
this last inference are combined to yield a witnessing term for the conclusion. As
a result of this modularity, the interpretation of a theorem can be readily obtained
from the interpretations of the lemmata used in its proof.

@ Jeremy Avigad and Solomon Feferman (1999). Gédel’s functional (”Dialectica”)
interpretation

4/1

A peek into Dialectica interpretation of functions

(A— B)p = 3fg¥zy(Ap(z, gzy) — Bp(fz,y))

Usual explanation : least unconstructive prenexation.
» Start from Iz, Vu, Ap[z,u] = Jy, Vv, Bply, v].

Obvious prenexation : Vz (Yu, Ap[z,u] — Jy, Vv, Bply,v])

Weak form of IP : Vz3y (Vu, Ap[z,u] = Yv, Bply, v])

Prenexation : Va3y, Vv, 3u (Ap[z,u] — Bply,v]).

Markov : Va, 3y, Vv, Ju(Aplz,u] — Bply,v])

Axiom of choice : 3f,3g, Vu, Vv, (Ap(u, guv) — Bp|fu,v]).

vVvyVvyVvyy

Dynamic behaviour : agrees to a chain rule.

Mathematical meaning : it’s some kind of approximation.

@ Ulrich Kohlenbach, Applied Proof Theory: Proof Interpretations and their Use in
Mathematics, 2008

5/1

Outline of the talk

e The Historical Dialectica

Differentiation and Differentiable Programming.

Factorizing Dialectica through differential linear logic.

Dialectica acting on A-terms.

Applications and related work.

6/1

Differentiable Programming

7/1

Differentiation

» Differentiation is finding the best linear approximation to a function at a
point.

faC*(R,R)

C(/. (0)

Chain Rule : Do(f @) g) = Dg(O)f o Dog

» Differentiation is a mathematical operation which needs to be fitted to
logical and computer science use.
» Algorithmic Differentiation : differentiating sequences of many-valued
functions efficiently.
» Differential Linear Logic : Differentiating proofs and A-terms.

8/1

Dialectica verifies the chain rule
Composing the Dialectica interpretation of arrows:

(A= B)plo1; 1, ur;vi]:= Ap(ui, iy uy v1) = Bp(py ui,vy)
(B = C)pld2; b2, us; va]:= Bp(ua, 12 us v2) = Cp (¢ ug, v2)
(A = C)pls; Vs, us;v3]:= Ap(uz, Y3 uzv3) = Cp(P3us,vs)

The Dialectica interpretation amounts to the following equations:

uz = uy V3, u3,v3 = P1, U1, U1
V3 = U2 Q2 U2 = @1, U1
Uz = Q1 Uy v1 = Ya(ug,vz)

which can be simplified to:

O3(us) = ¢2 (61 (u3)) composition of functions

s (ug, v3) = 1y (us, Wa(Prus, v3)) composition of their differentials

Thanks to T. Powell for noticing typos here.

9/1

But verifying the chain rule does not make you differentiation!

» More modern presentations of Dialectica.

» More Computer Science Friendly presentations of Differentiation.

» Linearity must enter the game.

10/1

Curry-Howard for semantics

Programs Logic Semantics
fun (x:A)-> (t:B) Proof of AF B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality
Dialectica

Differential A-calculus Differential Linear Logic Differential Categories

Dialectica is Backward Differentiation in Logic

11/1

And now for something completely different :
Automatic Differentiation

How does one compute the differentiation of an algebraic expression,
computed as a sequence of elementary operations ?

o — 2 I 9o ol
T = xf T = 2207
E.g : z2=y+cos(z?) x2=cos(x1) b= —xfsin(z)
2=y + T ' =y 4 2x97

Derivative of a sequence of instruction

I

sequence of instruction x sequence of derivatives

Forward Mode differentiation [Wengert, 1964]

(x1,2)) = (x2,2h) — (2,2').

Reverse Mode differentiation: [Speelpenning, Rall, 1980s]

1 = T3 — z = 2’ — b — x| while keeping formal the unknown derivative.

12/1

Curry-Howard for semantics

The syntax mirrors the semantics.

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

» Programs acts on programs.
» Functions are higher-order: they act not only on R", but also on
C*(R™,R).
» Programs are typed.
> Add:C*(R"™,R) x C=(R",R) — C*=(R™,R)
» Everything is interpreted in Categories.
> Objects are Data

» Functions are Programs
» Transformations are functorial:

F(p1;p2) = F(p1); F(p2)
F(fao f1) = F(f2) o F(f1)

13/1

Back to AD: I hate graphs

Du(fog) = Dg(u)foDu(g)

» Forward Mode differentiation :

g(u) = Dug — f(g(u)) = Dg(u)f - Dg(u)f o Dy(g)-
> Reverse Mode differentiation:

g(u) = f(g(w)) = Dyuyf = Dulg) = Dyeuyf o Du(g)

The choice of an algorithm is due to complexity considerations:
» Forward mode for fog: R — R™.
> Reverse mode for fog: R" - R

~ Differentiable programming is a new research area triggered by the advances of
deep learning algorithms on neural networks, it tries to attach two very old domains:
lambda-calculus and automatic differentiation, with correctness and modularity goals
in mind.

14/1

AD from a functorial point of view

D.(fog) =Dy, foDu(g)

Non-functorial !!!

How to make differentiation functorial 7 Make it act on pairs !

f:E=F

Forward Mode differentiation :

fiES>E-—Df:E>FE—F.

aﬁ{EiEﬁF

ur v = Dy (f)(v)

Functorial forward differentiation :

5 : ExE—FxF
(f, m>{@@Hm@@Jw»

15/1

Reverse AD from a functorial point of view

How to make reverse differentiation functorial ?

Make it act on pairs with linear duals !

16/1

Reverse functorial differentiation

Linear Dual
At=A - | = L(AR)

» Reverse Mode differentiation:
g(u) — f(g(u)) — Dg(u)f - Dg(u)f o Du(g)
fiEsFwDf:E=F-=> BL

S E=F'—E"
N ur LoDy (f)

[Mazza, Pagani, POPL2020]
» Reverse functorial differentiation :

(f, D(f): (E= F)x (E= F" = B")

17/1

Types !
Programs and variable are typed
by logical formulas which describe their behavior
witness
—_——
A~ Jz: W(A),Yu: C(A), Aplz, u
——

opponent

Witness and counter types :

C(A = B) = C(A) x C(B)

W(A = B) = (W(A) = W(B)) x (W(4) = C(B) = C(A))
Reverse Mode differentiation:
Functorial : (h, gh (A= B) x (A= B+ — A')

However:

» Having the same type does not mean you’re the same program.

»> Some french (linear) logicians have a strong opinion on what proof differentiation

should.

18/1

Types !

Programs and variable are typed
by logical formulas which describe their behavior

global witness

—
A~3F z:WA) ¥V u:C(A) ,Aplz,u]
——
local opponent
Witness and counter for implication types :

C(A = B) = C(A) x C(B)

function
W(A = B) = (W(A) = W(B)) x | W(A) = C(B) = C(4)

reverse derivative

Reverse Mode differentiation:

Functorial : (h, 5}1 (A= B) x (A= Bt — A})

However:

» Having the same type does not mean you’re the same program

> Some french (linear) logicians have a strong opinion on what proof differentiation
should.

18/1

A Linear Logic Refinement

19/1

Curry-Howard for semantics

The syntax mirrors the semantics.

Programs Logic Semantics

fun (x:A)-> (£:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

[Differential A-calculus [Ehr04 D1fferent1al Linear Logic [Ehrhard06]]

'\/ /{ Vectorial Models]

[Linear Logic [Gir87]

Doing to proofs everything we do to functions

20/1

Linear Logic

Usual Implicatio

inear Arrows

A=>B=14 —-B
C=(A, B) ~ L(IA, B)

Linear and Non

A proof is linear when it uses only once its hypothesis A.

» Notions of ressources
which have made their way into programmation through linear types.

» The dynamics of linearity gets encoded through the rules of the !
connective, and its dual 7.

A,B:=A®B|AY B|A® B|A& B|lA|?A

21/1

Linear Logic

Usual implicatio

inear Arrows Linear Implication

A=B=!4— B
C=(A, B) ~ L(IA, B)

Linear and

A proof is linear when it uses only once its hypothesis A.

» Notions of ressources
which have made their way into programmation through linear types.

» The dynamics of linearity gets encoded through the rules of the !
connective, and its dual 7.

A,B:=A®B|AY B|A® B|A& B|lA|?A

21/1

Linear Logic

Usual implicatio

near Arrows Linear Implication

A=B=!4 —B
C=(A, B) ~ L(IA, B)

Linear and

A proof is linear when it uses only once its hypothesis A.

» Notions of ressources
which have made their way into programmation through linear types.

» The dynamics of linearity gets encoded through the rules of the !
connective, and its dual ?.

A,B:=A® B|AY B|A® B|A & B|'A|?A

21/1

Dialectica factorizes through Linear Logic

The call by name arrow
A= B:=!A—-B:=(('4A)®BHt J
W(AL) = C(A) cAYh) = WA
W(A) = W(A) CU4) = W(A)= C(A)
W(A® B) W(A) x

W(B)
C(A® B) (W(A) = C(B)) x (W(B) = C(A))

LL
2
tx
AX W = AX

Ia Valeria de Paiva, 1989, A dialectica-like model of linear logic.

22/1

Differential Linear Logic

F{:A—oB d Ff:l1A—B ;

F{:!1A—B FDyf:A—-B

A linear proof From a non-linear proof

is in particular non-linear. we can extract a linear proof
faC”(R,R)

d/ (0)

@ Differential interaction nets, Ehrhard and Regnier, TCS (2006)

23/1

Exponential rules of Differential Linear Logic

Exponential connectives:

[A] = c=([ALK)Y [7A] == C>=([A]", K)

FT FT,f:74,9:7A FIT,0: A
—_—w c — 5 d
FIest; i 7A FT,fg:74 FI,0:7A

FT @ FT,o: 1A FAYIA FTz: A -
FT,0,: 14 FTA G0 1A © FT, Do()(2) 14 ¢

MkEx: A »
Mo, 1A

24/1

Differentiation in Differential Linear Logic

The only thing you need to know:
FT,v: A

FI,0,:14 FT, Do(-)(v) : 1A

FT,A, D, ()(v): 1A

YRR

25/1

Dialectica factorizes through Differential Linear Logic

Witnesses are functorial reverse derivative

W(A = B) = (W(A) = W(B)) x

(W(A) = C(B) = C(4))

J

W(A® B)
W(A — B)

W(A& B)
W(A® B)
W(lA)

IfT - Ain LL,

(W(A4) — C(B))
B(W(B) —o C(A))
W(A) ® C(B)

C(A) ® C(B)
(A) & C(B)
IW(A) —o C(A)

= W(A) e W(B) CA®B) =
= (W(4) = WI(B)
&(C(B) — C(4)) C(A—B) =
— WAEWB) C(AkB) =
— W(4)e W(B) C(AsB) =
—IW(A) C(14) —
then W(T") - W(A) in classical DILL.
CAAL .
Faaal 4 Teaaar i
F 74, A AL © Troa
TF 74, A

cut

26/ 1

Dialectica factorizes through Differential Linear Logic

The economical translation

[A= B].:=!A—-B
[Ax B]e : =A&B
[A+B].: =A@ B

L —% © 4 IDiLL

[[-114 l

+,% +,%
’ —> y
A o A

IDILL : Intuitionnistic Differential Linear Logic ? Oh no ...

27 /1

witness

—
A~ Jx: W(A),Vu: C(A), Aplz, u
———

opponent

Let’s say x, u, f, g are A-terms.

The computational Dialectica : a reverse Differential A-calculus

”Behind every successful proof there is a program”, Godel’s wife

28/1

A computational Dialectica

Making Dialectica act on A-terms instead of formulas.

A-terms with an extra type allowing for sums
F'Emy:9MA IF'Emg:MA

'to:MA T'Fmi®&me:IMA
F'kt: A T'Em:9MA T'Ef:A=MB

PE{t} :MmA PEm>=f:MB
WA= B) = (WA =W(B))

C(A = B)

i
=z
=
X
Q
&

29/1

Pédrot’s Dialectica Transformation

Soundness [Ped14]

IfT'F¢: A in the source then we have in the target
> W(T) - ¢*: W(A)
> W) Fty: C(A) = MC(X) provided = : X €T.

A global and a local transformation

x* = Az.t)* = (Az.t*, A\rx.t, m)
x, = Mw.{m} (Az.t), = Ar.(Az.t,) 7172
z, = M@ifx#y (tu)* = (t*1) u®

(t u)y =M. (t, (u,m) ® ((t°.2) mu® >=u,)

30/1

Flashback: Differential A-calculus [Ehrhard, Regnier 04]

Inspired by denotational models of Linear Logic in vector spaces of sequences,
it introduces a differentiation of A-terms.

D(Xz.t) is the linearization of Ax.t, it substitute x linearly, and then it
remains a term t' where T is free.

Syntax:
A ST UV 2=0]s|s+T
A s tu,vn=x | Aw.s | sT | Ds-t
Operational Semantics:

(Az.s)T —p s[T/x]
D(Az.s) -t =3, /\‘L%: 1

where % -t is the linear substitution of z by ¢ in s.

31/1

Linearity in Linear Logic

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.

Linear Non-linear
AFAVB AFAANA
AAzx.fxzx Az Af. fzx

Differentiation is about making a A-term linear :

~» about making a A-term have a linear usage of its arguments.

AxAf.fxax ~ 7

32/1

Linearity in Linear Logic

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.

Linear Non-linear
AFAVB AFAANA
AMAx.fxzx Az Af. fzx

Differentiation is about making a A-term linear :

~~ about making a A-term have a linear usage of its arguments.

DXz Af.fax) - v:=dAx A for+7

32/1

Linearity in Linear Logic

Linearity is about resources: A proof/program is linear iff it uses only
once its hypotheses/argument.

Linear Non-linear
AFAVB AFAANA
AMAx.fxzx Az Af. fzx

Differentiation is about making a A-term linear :

~~ about making a A-term have a linear usage of its arguments.

DAz Af.fzx) - v:= Az Afox + Az Af.Dav

32/1

The linear substitution ...

.. which is not exactly a substitution

@.[_{Lifxzy o

dxz ' 0 otherwise oz

9] ds 0
%(Ay.s)-t—)\y.% -t %(Ds-u) -t
90 0

5 1=0 G(stu-t=

% -t represents s where x is linearly (i.e. one time) substituted by ¢.

33/1

The linear substitution ...

The computational Dialectica

%-t—{ tifr=y
dx ' 0 otherwise

_q mifr=y
— L) otherwise

0 ot

ou
%(tu) -5 = (% -s)u + (Dt-(a—x -8))u

(tw)y = Am. (ty (u®, 7)) ® ((t°.2) Tu® >=uy)
0 Os ou
%(Ds-u)-t—D(% t)-u+Ds- (820 t)
0 0Os ou

%(s—ku)wﬁ— %454—%45

33/1

Tracking differentiation in Dialectica

Lo = Am{n} z* =z
Ty = M@ ifz#y Az.t)* = (QAz.t*, Az t, m)
Az.t)y = Am(Aw.ty) m.17w.2 (t uw)® = (t*.1) u®

(t u)y == Am. (ty (u®, 7)) ® ((t°.2) u® 7 >=uy)

34/1

Tracking differentiation in Dialectica

Lo = An.{r} z* =z
Ty = Mo ifx#y Az.t)* = (QAz.t*, dew.t, m)
Az.t)y = Am(Aw.ty) m.17w.2 (t uw)® = (t*.1) u®

(t)y = M. (t, (u®, 7)) ® ((£°.2) u® 7 >>=uy)

34/1

Tracking differentiation in Dialectica

Q

T = AT, g - T = x
Ty = AT g—‘;’ o ifr#y Az.t)* = (Az.t*, Azm. ty)
Az.t)y = Am.(Az.ty) 172 (tw)® == (Az. (tz)®) u®

(t u)y = Am. (ty (u®,m)) ® ((£°.2) u® T >=1uy)

That’s reverse differentiation
> (_)°.2 obeys the chain rule, (-)°® is the functorial differentiation.

» t,. is contravariant in x, representing a reverse linear substitution.

Theorem [K. Pédrot 22]
[u>=t,[[+ 7?]]] =5, Az ([u] (0zt[T « 7))2))

34/1

Tracking differentiation in Dialectica

oz .

Ty = AT gEem T =
Ty = AT g—z o ifrz#y Az.t)* = (QAz.t*, dom.ty m)
Az.t)y = Am(Az.ty) m.17w2 (t uw)® = (Az (to)*) u®

That’s reverse differentiation
> (_)°.2 obeys the chain rule, (-)® is the functorial differentiation.

» t. is contravariant in x, representing a reverse linear substitution.

Theorem [K. Pédrot 22]
[u3>=t,[0 7] =55 Az. ([u] (Bw4[T — 7))2)) J

34/1

Dialectica is differentiation in categories

That’s already known through lenses !

35/1

What’s categorical differentiation 7

To cook a good differential category, one needs :
> A category of regular/continuous/non-linear functions
C(A,B)=!A—-B.
> A category of linear functions, in which differentiation embeds
Z(A,B)=A — B.
» Something which linearizes :
d:A—1A
> A notion of duality, if one wants to encode reverse. differentiation.

~~ Basically, one wants a categorical model of DiLL.

36 /1

Dialectica categories

Categories representing specific relations

Consider a category C. Dial(C) is constructed as follows:
» Objects : relations a CU x X, B CV x Y.
» Maps from « to (5 :

(f:USV,F:UxY = X)

» Composition : the chain rule !

Consider
(fLF): aC(AX) —» BC(BY)
and (9,G): BC(B)Y) — vC(C2)

two arrows of the Dialectica category. Then their composition is defined as

(9,G) o (f, F) :=(g° f,(a,2) = F(a,G(f(a),2))).

37/1

Dialectica categories through Differential Categories
In a #-autonomous differential category :

0:Ide! —!
L(B®A,CH) ~L(A (B®C)Y)
from f:!A — B one constructs :
D(f) e LOA® BE, AY).

Dialectica categories factorize through differential categories
If £ is a model of DILL such that £, has finite limits:

ﬁl — g(ﬁg)
A — Ax AL

f oo (5D

We have an obvious forgetful functor:
.@(.,%l) — fg
u aCAxX — A
(f. F) = f

38/1

Recap

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differential Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

[Linear Logic [Gir87]

Vectorial Models

39/1

Recap

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differential Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

[Linear Logic [Gir87]

Vectorial Models

39/1

Recap

Programs Logic Semantics

fun (x:4)-> (t:B) Proofof A-B f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differential Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

[Linear Logic [Gir87]

Vectorial Models

[Dialectica [G6d58] J

Min. Logic

Automatic
Differentiation [80s]

Normal functors

39/1

Recap

Programs Logic Semantics

fun (x:A)-> (t:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

[Differentiable Programming]

Differential
A-calculus [Ehr04]

Differential Linear
Logic [Ehrhard06]

Vectorial Models

[Linear Logic [Gir87]

Automatic
Differentiation [80s]

[Dialectica [G6d58]]

Min. Logic

Normal functors

39/1

Recap

Programs Logic Semantics

fun (x:A)-> (¢:B) Proofof AFB f:A— B.
Types Formulas Objects
Execution Cut-elimination Equality

Differentiable Programming j

\

Differential W, (Differential Linear
A-calculus [Ehr04] Logic [Ehrhard06]

Vectorial Models

[Linear Logic [Gir87]]

Automatic
Differentiation [80s]

A-calculus Normal functors]

A good point for logicians : Gédel invented Dialectica 40 years before reverse
differentiation was put to light

Dialectica [G6d58]

39/1

Conclusion and applications

40/1

Take home message:
Dialectica is functorial reverse differentiation,

extracting intenstonal local content from proofs.

A new semantical correspondance between computations and mathematics :
intentional meaning of program is local behaviour of functions.

Program Proof Function
Quantitative Resources Linearity
Control Classical Principles | Differentiation

Related work and potential applications:
» Markov’s principle and delimited continuations on positive formulas.
» Proof mining and backpropagation.

» Bar Induction and Taylor Exponentiation.

41/1

Dialectica is differentiation ...

The codereliction of differential proof nets: In terms
of polarity in linear logic [23], the V-—-free constraint
characterizes the formulas of intuitionistic logic that can be
built only from positive connectives (&, ®, 0, 1,) and the
why-not connective (“?”). In this framework, Markov’s prin-
ciple expresses that from such a V-—-free formula A (e.g.
7@, (PA(x)®?B(x))) where the presence of “?” indicates
that the proof possibly used weakening (efq or throw) or
contraction (catch), a linear proof of A purged from the
occurrences of its “7” connective can be extracted (meaning
for the example above a proof of @&,(A(z) ® B(x))).
Interestingly, the removal of the “7”, ie. the steps from
7P to P, correspond to applying the codereliction rule of
differential proof nets [24].

... We knew it already !

Differentiation : ("P=(P —-1l)= 1) 5 ((P— 1) —oL1)=P)

@ Hugo Herbelin, “An intuitionistic logic that proves Markov’s principle”, LICS

10 .

42/1

Differentiation and delimited continuations

Herbelin Lics’10

Markov’s principle is proved by allowing catch and throw operations on

hereditary positive formulas.

bTrogb.T XM
THROW

b:T k.7 throw,b: L
a:—-—TkF,ra:——T AXIOM o A(z:l;:hrowag T e
a: =T btor a(Ab.throw,b): |
a: T F,7efqa(Ab.throw,b): T
a: ——T F catch, efq a(Ab.throw,b) : T
F Aa.catch, efq a(Ab.throw, b) : =——T — T

— K

1lE
CATCH

— 7

Figure 3. Proof of M P

43 /1

Proof Mining

Extracting quantitative information from proofs.

Effective moduli from ineffective uniqueness proofs. An unwinding of
de La Vallée Poussin’s proof for Chebycheff approximation®

Ulrich Kohlenbach
Fachbereich Mathematik, J.W. Goethe Universitat
Robert Mayer Str. 6 10, 6000 Frankfurt am Main, FRG

Abstract
We consider uniqueness theorems in classical analysis having the form
(+) Yu € Uwio € Vo (Glu, 1) = 0= Glu,va) = 01 = va),

where U, V are complete separable metric spaces, V,, is compact in V oand G: U x V 5 Ris a
constructive funetion.
1f () is proved by arithmetical means from analytical assnmptions

(++4) Vo € X3y € Yo¥z € Z(F(z

only (where X, Y, Z are complete separable metric spaces, ¥, C ¥ is compact and
F: x Y x Z - IR constru 2), then we can extract from the proof of (++4) — (+) an
effective modulus of uniquene

(+4+)Vu€ U vy, oo € Vi k € N(|Glu,m)], Glu,)| <277 < dy (v,) <27F)

44 /1

Proof Mining

Markov’s principle and the independence of premises are necessary for most of
mathematical analysis proofs :

Proof mining allows to refine these proofs by taking away thes principles as
guaranteed by (some variant of) Dialectica’s transformation.

Conjecture

Does it differentiate the function (e — 7) in :

Y, v1vg, Ve > 0,3n > 0, ||G(u,v1) — G(u,v2)|| <1 — dy(v1,v2) < €

Is proof mining (based on) reverse differentiation applied to proofs?

What else can we explain by differentiation ?

45/1

Thank you for Listening !

46 /1

