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Introduction & Organization of the Tutorial

Post-Quantum Cryptography

Cryptosystems secure both against classical and quantum adversaries

Part I. Cryptography in the era to quantum technologies
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Polynomial System Solving over Finite Fields (PoSSo,)

( g, size of field n, nb. of variables m, nb. of equations]
PoSSoq
Input. non-linear polynomials p1, ..., pm € Fq[x1,. .., X
Question. Find —if any — (z1, . .., z,) € Fg such that:

pi(z1,...,2p) =0

pm(z1,...,20) =0
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Outline

0 Algebraic Cryptanalysis
Q PoSSo, and Grébner bases
e Algebraic cryptanalysis of LWE with Binary Errors

0 Polynomial System Solving (PoSSo,) in the Quantum Setting
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Outline

0 Algebraic Cryptanalysis
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Algebraic cryptanalysis

General approach to asses the security of post-quantum schemes

Idea
\
(1 Model a cryptosystem as a set of algebraic equations over a finite field
(PoSSoq problem)
[ Try to solve this system and/or estimate the difficulty of solving

= N. Courtois, J. Ding, J.-C. Faugeére, P.A. Fouque, H. Gilbert, L.
Goubin, W. Meier, J. Patarin, |. Semaev, A. Shamir, B.-Y. Yang, ...

Cryptosystem
S s s » Secret
(+ messages, ciphertexts, ...)

I\/Iodeling\

4x° +5x4+6y°+3yz+5y+1,
5x°+xy+2xz+622+32z+4+3,

6xz+5y2+2y+422+62z+5 [ISIUULCRIERRE
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Algebraic cryptanalysis

-
hash-based

Multivariate : intrinsic tool
Code-based : important tool

Lattice-based : alternative tool for
asympt. hardness

Hash-based : minor impact
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Outline

o PoSSo, and Grébner bases
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Grobner basis

Linear system Non-linear system
é1(X1,...,Xn):O p1(X1,...7Xn):0
Em(xh"'vxn)zo pm(Xh"'vXn):o

V = Vecr, (¢1,...,4m) Z={p1,---,Pm)
Gauss reduction of V Grobner basis 7

A monomial is a power product of the variables, i.e. an element of the

form x{" - - X3 (X1 %2%3° Or X1 X5X3)

Definition [B. Buchberger’1965]

Let < be a mon. ordering (LEX or DRL) and Z C Fg[xy, . . ., Xa).
G C T is a Grobner basis iff:

VfeZ dg € G such that LeadingMon_(g) | LeadingMon_(f).
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Grobner basis

(d A monomial is a power product of the variables, i.e. an element of the
form x{ - - X5 (X1 %2%3° OF X1 X5 X3)

Definition [B. Buchberger’1965]

Let < be a mon. ordering (LEX or DRL) and Z C Fy[xy, . . ., Xs].
G C 7 is a Grobner basis iff:

VfeZ 3g € Gsuch that LeadingMon_(g) | LeadingMon_(f).

QX" - Xy <pEx xf‘ -+ X" if the first left-most nonzero entry of 3 — a
is positive
X1X2X3° <LEX X1X5X3
Q X" X" <DRL x;& cxPn it S < S Bi,or
S, ai = > i, Bi and the right-most nonzero entry of 3 — «vis
negative

X1 X2X3° =DRL X1X2X3
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Grobner basis
(d A monomial is a power product of the variables, i.e. an element of the
form x{ - - X5 (X1 %2%3° OF X1 X5 X3)
Definition [B. Buchberger’1965]

Let < be a mon. ordering (LEX or DRL) and Z C Fy[xy, ..., Xs].
G C T is a Grobner basis iff:

VfeZ 3g € G such that LeadingMon_(g) | LeadingMon_(f).

Definition
LetFqo CLandZ = (p1,...,pm) C Fq[x,...,x,] be anideal.

VL(Z) = Vi(pr, ..., pm) = {2z € L" | pi(z) = 0,Vi, 1 < i < mj,

is the IL-variety associated to 7.
q

1z Usually, we want . = [y, field equations x;" — xq,. .. , X7 — x, implicitly

added
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Grobner basis

(d A monomial is a power product of the variables, i.e. an element of the
form x{ - - X5 (X1 %2%3° OF X1 X5X3)

Definition [B. Buchberger’1965]

Let < be a mon. ordering (LEX or DRL) and Z C Fy[xy, .. ., Xs].
G C 7 is a Grobner basis iff:

VfeZ 3g € Gsuchthat LeadingMon_(g) | LeadingMon_(f).

Property

LetZ = (p1,...,pm) C Fg[x1,...,xn] be a polynomial ideal. If #V(Z) = 1,
then — for any admissible monomial ordering — the (reduced) Grébner basis
G of Z is as follows:

{X1 —a1,...,xn—a,,}, with (a1,...,an) € (E)n
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Zero-dimensional strategy

p1(X1,...,Xn) g1(X1,...,Xn)

compute GB
Pm(X1, - - -, Xn) 9s(xn)
Initial syst. LEX-GB
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Zero-dimensional strategy

gi(X1, ..., Xn)
p1(X1,...7Xn) gq(x17"'7xn) g(X)
s\*n
compute GB : change ordsFX-CB
pm(X1 g 7Xn) g;(X1 PR Xn) b(#801sw)
Initial syst. DRL-GB FGLM  [Faugeére-

Gianni-Lazard-
Mora, 1993]
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Computing a Grobner basis

E

E

B. Buchberger.

“An Algorithm for Finding the Basis Elements of the
Residue Class Ring of a Zero Dimensional Polynomial
Ideal”, PhD thesis, 1965.

J.-C. Faugeére.

“A New Efficient Algorithm for Computing Grébner Bases
(F4).

Journal of Pure and Applied Algebra, 1999.

J.-C. Faugere.

“A New Efficient Algorithm for Computing Grébner bases
Without Reduction to Zero (F5).”

ISSAC, 2002.

C. Eder, J.-C. Faugere.

“A Survey on Signature-Based Grébner Basis
Computations”.

ArXiv, April 2014.

Figure: Bruno Buchberger
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Grobner basis & Linear algebra

acaulay

Macaulay matrix My ;" of degree D

(d homogeneous p1,...,pm € Fq[x1, ..., X
d < monomial ordering (LEX or DRL)
[ t;; monomials of degree D — deg(f;)

mono. of deg. D sorted for <

ti,1 P
t 2 P

tm,1 Pm
tm,2 Pm
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Grobner basis & Linear algebra

Lazard’s theorem

Let p1,...,pm € Fg[x1,. .., x| be a zero-dimensional (homogeneous)
system. For D big enough, the row-echelon form of M%‘ff,,may(p1, ey Pm)

contains a Grobner basis.
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Complexity of computing a Grébner basis — |

Complexity is driven by the maximal degree D, reached.

o ( (”JBDL;) w) , Row-echelon form

on matrices up to degree D.g

(A= =fn=0]

~

A

» B. Buchberger (1965)

» D. Lazard (1983)

* F4 (J.-C. Faugere, 1999)

* Fs (J.-C. Faugere, 2002)

* FGLM (J-.C. Faugere, P. Gianni,
D. Lazard, T. Mora, 1993)

Variety
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Complexity of computing a Grobner basis — Il

Regular/Semi-Regular Sequence [Bardet, Faugere, Salvy, Yang,
MEGA’2003]

Let p1,...,pm € Fg[x1, ..., X;] be quadratic homogeneous polynomials.
The system is regular (resp. semi-regular) if m < n (resp. m > n) and its

Hilbert series is:
(11— z°
1 _ Z)” Z hi
i=0
v b rank defects of M2
15 Do is the index of the first coeff. < 0 of the Hilbert series.

= Extension to non-homogeneous polynomials — homogeneous
components of highest degree
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Complexity of computing a Grobner basis — Il
Regular/Semi-Regular Sequence [Bardet, Faugeére, Salvy, Yang,
MEGA’2003]

Let p1,...,pm € Fg[x1, ..., X5] be quadratic homogeneous polynomials.
The system is regular (resp. semi-regular) if m < n (resp. m > n) and its

Hilbert series is: (
1— z
hiz'.
(1— z)” ;
1= h; rank defects of Mﬁfnamay
15 Do is the index of the first coeff. < 0 of the Hilbert series.

= Extension to non-homogeneous polynomials — homogeneous
components of highest degree

Example (n=5,m=6,d = 2)

14+5x+9x°+5x3 —4x*+...
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Complexity of computing a Grobner basis — Il

Regular/Semi-Regular Sequence [Bardet, Faugere, Salvy, Yang,
MEGA’2003]

Let p1,...,Pm € Fg[x1, ..., X,] be quadratic homogeneous polynomials.
The system is regular (resp. semi-regular) if m < n (resp. m > n) and its

Hilbert series is: (
1-2°
h; 7
1 __z)n jg:

i=0

&

h; rank defects of Mﬁff;‘“lay
Dy is the index of the first coeff. < 0 of the Hilbert series.

Extension to non-homogeneous polynomials — homogeneous
components of highest degree

&

5

 Regular sequence exists

(d Randomly sampled instances of PoSSo, behave as regular/semi-regular

sequences

(1 Existence of semi-regular sequence is open (Fréberg’s conjecture)




Complexity of computing a Grobner basis — Il

Regular/Semi-Regular Sequence [Bardet, Faugere, Salvy, Yang,
MEGA’2003]

Let p1,...,pm € Fg[x1, ..., X5] be quadratic homogeneous polynomials.
The system is regular (resp. semi-regular) if m < n (resp. m > n) and its

Hilbert series is:
1 y 2
h; 2
1 _ Z)” Z
i=0
1= h; rank defects of Mﬁfﬁ;‘“lay
15 Do is the index of the first coeff. < 0 of the Hilbert series.

= Extension to non-homogeneous polynomials — homogeneous
components of highest degree

1 Existence of semi-regular sequence is open (Fréberg’s conjecture)
== Finding one explicit example
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Complexity of computing a Grobner basis — Il
Macaulay matrix M%f;ulay of degree D
< Regularity ~ algebraic independence of Macaulay matrices
v Trivial syzygies pip; = p;p;-

mono. of deg. < D sorted for <

b1 ps
t 2 Py

tm,1 Pm
tm,2 Pm
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Complexity of computing a Gréobner basis — Il

O Letpr,...,pm € Fq[x, ..., x,] be a regular sequence (n < m).

Z£1(di_ 1)"‘1.

Dreg - 2

A Dieg = (n+ 1) for n = m quadratic polynomials.

Pns P+t € Fglx1, ..., x| be a semi-regular sequence.

Dreg = (n+1)/2.
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Complexity of computing a Grobner basis — Il
Asymptotic Expansion [Bardet, Faugére, Salvy, Yang, MEGA’2003]

Letpy,...,pm € IFq[x1, ..., Xp] be a semi-regular systemof m= C - n
quadratic equations with C > 1 a constant :

1
Dieg =~ (C_E_ C(C—1))n.
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Complexity of computing a Grobner basis — Il

Global picture [Bardet, Faugére, Salvy, Research Report, 2003]

Let p1,...,Pm € Fq[x1, ..., X, be a semi-regular system of m quadratic
equations:

= poly-time complexity if m = ("}?) (Linearization bound)
w poly-time complexity if m = ("3")
sub-exponential complexity if m = O(n)

=
1= exponential complexity if m = O(n) or m = n+ Cst
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Hybrid approach for solving PoSSo,
PoSSoq

Input. Quadratic non-linear polynomials p1,

., Pm € Fglx1, ..., X
Question. Find (z;,....2,) € IFg such that:

P1(Z17~~-~,Zn):Ow--,Pm(ZL

[ L Bettale, J.-C. Faugere, L. P

“Solving Polynomial Systems over Finite Fields: Improved Analysis of the Hybrid Approach”.
ISSAC 2012

Algorithm

Fora € F§

Specialize variables

p — (,51(x1,...,x,,_k,a),...,bm(x1,...,x,,_k,a))

V «— W, (P) ‘ Solve the sub-systems‘
If V % 0 then return {(v,a) € Fj~* x Fk|v e V}.

16/26



Hybrid approach for solving PoSSo,

Algorithm
Fora € Ff

Specialize variables

P (Bi(X1y.- s Xn—k @), .o, Pm(X1, ...y Xn—k,Q))

V «— W, (P) \ Solve the sub-systems\
If V # 0 then return {(v,a) € Fj~* x F&|v e V}.

Intuition

 Dieg = (n+ 1) for m = n quadratic polynomials.
0 Dieg = (n+1)/2 for m = n+ 1 quadratic polynomials.
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Hybrid approach for solving PoSSo,
Algorithm

Fora € F¥
Specialize variables

P+ (Bi(x1y. s Xn—k,@), .o, Pm(X1, -« .y Xn—k,Q))

V « Vg, (B) \ Solve the sub-systems\
If V # 0 then return {(v,a) € Fj~* x F&|v € V}.

Complexity

Assuming semi-regularity of the sub-systems, the asymptotic complexity is:
o) (2(1~33—°~63w '°gz(‘7)1)"~W> ,with 2 < w < 3 and log(q) < n.

Asymptotic gain : O(20-621),
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Outline

e Algebraic cryptanalysis of LWE with Binary Errors
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LWE with Binary Errors

\ g : size of field n:nb. of variables m : nb. of samples

[3 D. Micciancio, C. Peikert.
“Hardness of SIS and LWE with Small Parameters”.

CRYPTO’18.
BinaryErrorLWE
Input. a random matrix G € Fg*"™ and ¢ € FFg.
Question. Find - if any — a secret (s1, . . . , sp) € Fg such that:
error =c¢ — (S1,...,S,) x Ge {0,1}".

Hardness Results

v Solving BinaryErrorLWE with m = n<1 +Q(1 //og(n))> allows to
solve Gap-SVP in the worst-case
1 Polynomial-time algorithm if m = O(r?)
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Algebraic Modelling

BinaryErrorLWE

Input. a random matrix G € Fg*", and ¢ € F{.
Question. Find —if any — (s1, .. ., sp) € Fg such that:

c—(s1,...,s,) x G=error € {0,1}".

r= m linear equations in n variables over [, with binary noise.
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Algebraic Modelling

BinaryErrorLWE

Input. a random matrix G € ngm, andc € IF?.

Question. Find —if any — (s1, .. ., sp) € Fg such that:
c—(s,...,87) x G=error € {0,1}".

r= m linear equations in n variables over [, with binary noise.

Arora-Ge Modelling
Let P(X) = X(X —1):

n

n
fi=Pler—)_5G1) =0,....fn=P(en— D _ 5Gym) =0.
j=1

=1

1= m quadratic equations in n variables over F,.
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Until Now

P(X) € Fy4[X] be vanishing on the errors.

Arora-Ge Modelling
Solving BinaryErrorLWE =

n
f1—P ZX/(;/‘1 = 7"'7fm:P(Cm_ZXjGj’m):0‘
j=1

Arora-Ge Algorithm

BinaryErrorLWE: m quadratic equations in n variables over [IF,.
v — polynomial-time algo. when m = O(n?).
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Solving BinaryErrorLWE with Grébner Bases

Assumption

We assume that the systems occurring in the Arora-Ge modelling are
semi-regular.

= Rank condition on the Macaulay matrices.
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Solving BinaryErrorLWE with Grébner Bases
Asymptotic Expansion

Letfi,...,fm € Fyg[xy,..., X,] be a semi-regular systemof m= C - n
quadratic equations with C > 1 :

1
Dieg =~ <C—§— C(C—1)>n.

Theorem
Under the semi-regularity assumption:

= lfm=n (1 4= m)’ one can solve BinaryErrorLWE in O (23'25'”).

& |f m =2 n, BinaryErrorLWE can be solved in O (2'927) .

3n log log log n

= |f m= O (nloglogn), one can solve BinaryErrorLWE in O (2 gloglogn ) .
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Outline

0 Polynomial System Solving (PoSSo,) in the Quantum Setting
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Boolean Polynomial System Solving (PoSSo,)

PoSSo»
Input. quadratic polynomials py, ..., pm € Fa[x1, ..., Xp]
Question. Find —if any — (z1, ..., z,) € FJ such that:

p1(z1,...,z7)=0,....pm(z1,...,27) =0

[ PoSSo, remains NP-hard

Solving PoSSo, — Classical setting

@ Optimized exhaustive search in 4 log, 2" [C. Bouillaguet, C.-Mou
Cheng, T. Chou, R. Niederhagen, B-Y. Yang, SAC, 2013]

@ BooleanSolve O(2°79%") [M. Bardet, J.-C. Faugére, B. Salvy, P-J.

Spaenlehauer, JoC, 2013], regularity assumption on the input

@ Polynomial approximation, O*(2°-6943") 1. Dinur, SODA, 2021], no
assumption
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Boolean Polynomial System Solving (PoSSo,)

Overview
a F:{0,1}" — {0,1}
O Find x* € {0, 1}" such that F(x*) =

1 Complexity H = 1(1)|1 evaluations of F as a quantum circuit

[Schwabe-Westerbaan, SPACE, 2016]

w Givenp = (pi1,...,Pm) € Fao[x1,...,X,|™, Fis the function that returns
1if p(x*) = 0.
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Boolean Polynomial System Solving (PoSSo,)

Solving PoSSo, — Quantum setting

« Quantum exhaustive search in O(2"/2mn?) [Schwabe-Westerbaan,
SPACE, 2016]

@ Reduction to quantum linear system solving (HHL) [Chen-Gao, Journal
of Systems Science and Complexity, 2018]

Solving PoSSo, with probability > 1 — € in:

f)(poly(n)ffz log(1 /€)>7

K condition number of a certain (Macaulay) matrix.
@ Condition number « is exponential in the hamming weight of the
solution [Ding-Gheorghiu-Gilyén-Hallgren-Li, ArXiv, 2021]

Algorithms beating the quadratic speed-up ?

23/26



Key Ideas — BooleanSolve

[1/ Combine exhaustive search and Grébner basis-like computationj

@ L. Bettale, J.-C. Faugere and L. P.
“Solving Polynomial Systems over Finite Fields: Improved Analysis of the Hybrid Approach'".
ISSAC '12.

M. Bardet, J.-C. Faugere, B. Salvy, P.-J. Spaenlehauer.
“On the Complexity of Solving Quadratic Boolean Systems".
J. Complexity, 2013.

BooleanSolve (k < n)
Fora € F4

Pa < (P1(x1,- - Xn—k,8), ..., Pm(X1, ..., Xn_k,Q))
If pa is consistent

(= \ Linear algebra computation with w = 2 (Las-Vegas variant) \

Findz = (2,...,2, ) € F3~ ¥ such that

Pa(2) = p(a, 2) = 0.

= ‘ Exhaustive search for the remaining variables ‘
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Key Ideas — BooleanSolve

[2/ Checking consistency with linear algebra]

Hilbert’s Nulistallensatz

Let pi1,...,Pm € Fo[xq,...,xp] and M = M%‘fi,“lay be the corresponding
Boolean Macaulay matrix for a large enough degree D. It holds that the
linear system

u-M=(0,0,...,0,1) has a solution

< non-linear system p; =0, ..., pn = 0 has no solution in 7.
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Key Ideas — BooleanSolve

@ M. Giesbrecht , A. Lobo and B. D. Saunders.
“Certifying Inconsistency of Sparse Linear Systems".
ISSAC, 1997.

GLS algorithm — Complexity (Las-Vegas)

It checks the consistency of an N x N matrix over F with :
[ O(Nlog N) evaluations of black-boxes and
O additional O(N? log? N log log N) operations.

== Proven fast linear algebra in quadratic-time
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QuantumBooleanSolve

BooleanSolve (k < n)

Fora € F%
O pa+— (Pi(x1,- .-, Xn—k @), .-, Pm(X1,s .- ., Xn—k,Q))
 If p, is consistent

< ‘ Linear algebra computation with w = 2 (Las-Vegas variant) \

O FindZ = (%,...,2, ) € F3~¥ such that

Pa(2) = p(a, ) = 0.

< ‘ Exhaustive search for the remaining variables ‘

QuantumBooleanSolve (k < n)

O Find a € F4 such that p, is consistent with a Grover-like search
= Quantum circuit for Giesbrecht-Lobo-Saunders algorithm
O Findz = (%,...,%, «) € Fi~¥ such that pa(2) = p(a, ) = 0 with

Schwabe-Westerbaan quantum exhaustive search yeod



QuantumBooleanSolve

QuantumBooleanSolve (k < n)
1 Finda e IF’Q‘ such that p, is consistent with a Grover-like search
= Quantum circuit for Giesbrecht-Lobo-Saunders algorithm

O Findz = (%,...,2, ) € Fj " such that pa(2) = p(a, Z) = 0 with
Schwabe-Westerbaan quantum exhaustive search

Complexity (m = n, k = vn)

Under a regularity assumption, QuantumBooleanSolve has complexity :

0(2% x (22Fe+In) = o(2F +2Faln o)

9

where v = 1 — K F () = —vlog,(DP(1 — D)'=D)) with D = M(}/), and

1 1
M(x) = —x + §+ é\/2x2— 10x — 1+ 2(x + 2)/x(x + 2).
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QuantumBooleanSolve

Complexity (m = n, k = yn)

Under a regularity assumption, QuantumBooleanSolve has complexity :
O(Zg % (22Fa(’y)+e)n) _ 0(2(1_%+2Fa(7)+e)n)7

where y =1 — &, F,(y) = —ylog(D°(1 — D)'=P)) with D = M(?}), and

1 1
M(x) = —x + Rl 5\/2)(2 —10x — 14+ 2(x + 2)/x(x + 2).

BooleanSolve

i | 0(294527) for solving PoSSop

.792

= Square root of O(2"2°) = O(20-39n)

25/26



QuantumMQSolve

LGeneraIization for any g > 3]

Complexity (m = n, k = yn)

H(p) = —plogz(p) — (1 — p) logz(1 — p), and
MI(x) = x — 3 — /x(x —1).

Fi(v) = (v + MI(a/v))H (W)
For any e > 0, QuantumMQSolve has expected complexity:

O(2(log2(@) ' +2FA(7)+e)ny

The asymptotic complexity is:

o) <2(2.76—2.48|0g2(Q)1)n> ,assuming log(q) < n.
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