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Computable algebraic structures

In the 1960s, Mal’tsev and Rabin initiated the systematic development
of computable structure theory (or the theory of constructive models).

In the talk, we work only with at most countable algebraic
structures S. For simplicity, we assume that all our structures have finite
signatures.

A structure S in the signature

{Pn0
0 , Pn1

1 , . . . , Pnk

k ; fm0
0 , fm1

1 , . . . , fm`

` ; c0, c1, . . . , ct}

is computable if:

I the domain of S is a computable subset of ω;

I the predicates PSi and the operations fSj are computable.
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Primitive recursive structures

The classical computable structure theory studies effective and
algebraic content of structures within the framework of Turing
computability.

I What about sub-recursive classes of algorithms?

The following notion is introduced in the paper of Mal’tsev
“Constructive algebras. I” (1961).

Note that the original definition is based on the theory of numberings.

Definition (Mal’tsev)
A structure S in the signature

{P0, P1, . . . , Pk; f0, f1, . . . , f`; c0, c1, . . . , ct}

is primitive recursive if:

I the domain of S is a primitive recursive subset of ω, and

I the predicates PSi and the operations fSj are primitive recursive.
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Eliminating unbounded search

The restricted Church–Turing Thesis for primitive recursive functions
states the following:

A function f(x̄) is primitive recursive if and only if it can be
described by an algorithm which uses only bounded loops.

Informally speaking, in a Pascal-like programming language, a
program is not allowed to use instances of while . . .do, repeat
. . .until, and go to.

Therefore, one can say that in primitive recursive structures,
we eliminate unbounded search procedures.
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We note that there are other ways to implement sub-recursive,
countably infinite algebraic structures:

(i) The framework of polynomial-time computable structures:

I The works of Cenzer, Grigorieff, Nerode, Remmel, and other authors
(1990s). For example:
I Every computable linear order has a polynomial-time copy

[Grigorieff 1990].
I Every computable torsion abelian group has a polynomial-time copy

[Cenzer and Remmel 1991].

I The recent works of Alaev and Selivanov (since 2016).

(ii) The framework of automatic structures (Khoussainov and Nerode
1995, Blumensath and Grädel 2000, . . . ).

(iii) Structures in the Grzegorczyk hierarchy (Alaev and Selivanov 2021).
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Punctual structures: Motivation

In the algorithm design for finite structures, there are online and
“offline” algorithms:

I Online situation: Input arrives bit-by-bit, and decisions have to be
made on the fly.

I Offline situation: One can make decisions after seeing all of the
input data.

Example. Every finite tree T is 2-colorable, but the desired coloring is
achievable only in offline fashion.

In this setting, online situation looks like this:

At a stage s, our input shows a new node vs of the tree T . We have to
declare the color of vs right now, i.e. we cannot wait for vs+1 to appear.

It is known that in the online situation, the sharp lower bound is
O(log n) colors for a tree with n vertices.
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Punctual structures: Motivation

Punctual structures aim to emulate online situation for primitive
recursive algorithms.

Example. Cenzer and Remmel (1991) showed that every computable
relational structure S has a polynomial-time isomorphic copy P.

Proof sketch for obtaining a primitive recursive copy P.
W.l.o.g., one may assume that dom(S) = ω.
Suppose that we have already chosen the first n+ 1 elements of P —

a0, a1, . . . , an from ω.
Wait until all signature S-relations for all tuples b̄ from

{0, 1, . . . , n+ 1} are computed. While waiting, declare:

an + 1 6∈ dom(P), an + 2 6∈ dom(P), an + 3 6∈ dom(P), . . . .

When the S-relations are eventually computed, we choose an+1 as
the least element, which has not declared anything about its membership
in dom(P).

The example above is not online: We just keep postponing our
decision on how to deal with (a copy of) the next element from S.
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Punctual structures

Definition (Kalimullin, Melnikov, and Ng 2017)
A countably infinite algebraic structure S is punctual if dom(S) = ω,
and the signature functions and predicates of S are primitive recursive.

Since 2017, the theory of punctual structures has become a vast
research area with a lot of interesting results and applications.

For example, the methods of this theory are used in the proof of the
following:

Theorem (B., Harrison-Trainor, Kalimullin, Melnikov, and Ng 2019)

The index set of computable structures which have a polynomial-time
isomorphic copy is m-complete Σ1

1.
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(i) Effective categoricity for punctual structures:
The case of finitely generated structures



Computable categoricity

Definition (Mal’tsev)
A computable structure S is computably categorical (or autostable) if
for any computable structure A isomorphic to S, there is a computable
isomorphism f from A onto S (i.e. f is an isomorphism, which is also a
computable function).

Informally speaking, all computable isomorphic copies of a computably
categorical structure S have the same algorithmic properties (from the
point of view of classical computable structure theory).

Proposition (Mal’tsev 1961)
Every finitely generated computable structure is computably categorical.
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Punctual categoricity

Definition (Kalimullin, Melnikov, and Ng)
A punctual structure S is punctually categorical if for any punctual
structure A isomorphic to S, there is an isomorphism f : A ∼= S such
that both f and f−1 are primitive recursive.

[Recall that Kuznecov (1950) proved that there is a primitive recursive permutation f

such that its inverse f−1 is not primitive recursive.]

Theorem (Kalimullin and Melnikov)
If a punctual structure S is punctually categorical, then S is either
finitely generated, or locally finite.

Within the punctual framework, the properties of effective categoricity
for finitely generated structures become highly non-trivial.
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Example. The structure S = (ω; succ), where succ(x) is the successor
function, is not punctually categorical.

Proof Sketch. Fix a computable list of all unary primitive recursive
functions (pe)e∈ω.

We build a punctual A isomorphic to (ω; succ), satisfying the
following requirements:

Re: pe is not an isomorphism from A onto (the standard copy of) S.

0 1 2 3
. . .

The standard (ω,succ)

”Island”

. . . . . .
w

pe

A

a0 a1 a2

0 1 2 3
. . .

. . .

w 6= a5

pe(w)↓ = 5

A

a0 a1 a2

Many
fresh
points
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PR-degrees

Primitive recursive isomorphisms give rise to a natural structure of
degrees:

Definition (Kalimullin, Melnikov, and Ng)
Let A and B be isomorphic punctual structures. We say that A ≤pr B if
there is a primitive recursive isomorphism f from A onto B.

For a punctual structure S, by PR(S) we denote the poset({
A : A is a punctual isomorphic copy of S

}
/≡pr ; ≤pr

)
.

We discuss results on the posets PR(S) for finitely generated (or f.g.,
for short) structures S.
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The least degree

Proposition (Kalimullin, Melnikov, and Ng)
If S is a f.g. punctual structure, then PR(S) has a least element.

Proof Idea. The least degree is induced by a “naturally generated” term
algebra built around the finite set of generators of S.
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Density

Theorem 1 (B., Kalimullin, Melnikov, and Ng 2020)
Let S be a f.g. punctual structure. Then the poset PR(S) is dense, i.e.
if A and B are punctual copies of S such that A <pr B, then there is
a punctual C with A <pr C <pr B.

Consequently, if card(PR(S)) > 1, then PR(S) is countably infinite.

[Cf. a similar result on punctual numberings (to be discussed below).]

Theorem (Greenberg, Harrison-Trainor, Melnikov, and Turetsky 2021)

There exists a punctual structure M such that PR(M) is not dense.
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Greatest element

Proposition (Kalimullin, Melnikov, and Ng)
The poset PR(ω; succ) has no maximal elements.

Theorem 2 (B., Kalimullin, Melnikov, and Ng 2020)
There exists a punctual f.g. structure S such that the poset PR(S) is
infinite and has a greatest element.
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Embeddings of countable lattices

Theorem (Kalimullin, Melnikov, and Zubkov)
Let S be a rigid, f.g. punctual structure such that card(PR(S)) > 1.
Then for a countable lattice L, the following are equivalent:

I L is isomorphically embeddable into PR(S) (preserving suprema
and infima),

I L is distributive.
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(ii) Rogers semilattices for punctual numberings



Numberings: Reducibilities

Let S be a countable set. A numbering ν of the set S is a surjective
map from the set of natural numbers ω onto S.

A numbering ν is reducible to a numbering µ, denoted by ν ≤ µ, if
there is a total computable function f(x) such that

ν(n) = µ(f(n)) for all n ∈ ω.

Numberings ν and µ are equivalent (denoted by ν ≡ µ)
if ν ≤ µ and µ ≤ ν.

Definition
We say that a primitive recursive function f punctually reduces ν to µ
(denoted by f : ν ≤pr µ), if

ν(n) = µ(f(n)), for all n.

The preorder ≤pr induces the corresponding equivalence relation ≡pr
on numberings.
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Numberings: Computable and punctual
Let ν be a numbering of a family S ⊂ P (ω). The numbering ν is

computable if the set

Gν = {(n, x) : x ∈ ν(n)}
is computably enumerable. In other words, ν uniformly enumerates the
family S consisting of c.e. sets.

A family S ⊂ P (ω) is computable if S has a computable numbering.
By ComΣ0

1
(S) we denote the set of all computable numberings of the

family S.

Definition
Let S be a family of primitive recursive functions. A numbering ν of the
family S is punctual if the function

gν(n, x) := (ν(n))(x)

is primitive recursive.

A family S is punctual if it has a punctual numbering.
By Compr(S) we denote the set of all punctual numberings of S.
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Numberings: Rogers semilattices

Given numberings ν and µ of a family S, one defines a new
numbering ν ⊕ µ as follows.

(ν ⊕ µ)(2n) := ν(n), (ν ⊕ µ)(2n+ 1) := µ(n).

I In the classical setting: For a computable family S, the quotient
structure

RΣ0
1
(S) := (ComΣ0

1
(S);≤,⊕)/≡

is an upper semilattice. It is called the Rogers semilattice of the
computable family S.

I In the punctual setting: For a punctual family S, the structure

Rpr(S) := (Compr(S);≤pr,⊕)/≡pr
is the (punctual) Rogers semilattice of the punctual family S.
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Minimal elements

In the classical setting:

I For the family of sets S0 = {∅, {0}}, the Rogers semilattice
RΣ0

1
(S0) is isomorphic to the semilattice Rm of c.e. m-degrees.

Notice that this semilattice has a least element.

I Let CE be the family of all c.e. sets. The semilattice RΣ0
1
(CE) has

infinitely many minimal elements:
I induced by Friedberg (i.e. 1–1) numberings [Rogers 1967];
I induced by positive undecidable numberings [Ershov 1968];
I induced by non-positive numberings [Khutoretskii 1969].

In the punctual setting:

Theorem 3 (B., Mustafa, and Ospichev 2020)
Let S be a punctual family.

I If S is finite, then the punctual Rogers semilattice Rpr(S) is
one-element.

I If S is infinite, then Rpr(S) has no minimal elements.
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Density

In the classical setting:

For the family S0 = {∅, {0}}, the semilattice RΣ0
1
(S0) is isomorphic

to Rm.

Hence, the semilattice has atoms (  minimal c.e. m-degrees).

In the punctual setting:

Theorem 4 (B., Mustafa, and Ospichev 2020)
Let S be an infinite punctual family. Then the punctual Rogers
semilattice Rpr(S) is dense, i.e. for any punctual numberings ν <pr µ of
the family S, there is a numbering ξ ∈ Compr(S) such that
ν <pr ξ <pr µ.

Informally speaking, this theorem is the same as the result on density
of PR(A) for a f.g. structure A, but with all “algebraic” details omitted.
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Proof sketch for Theorem 4 (if time permits)

For any punctual numberings ν <pr µ of our family S, there is a
numbering ξ such that ν <pr ξ <pr µ.

Proof Sketch. Fix a computable list of all unary p.r. functions (pe)e∈ω.

We build a punctual numbering α of some subfamily S0 ⊆ S.

I At a stage s, we promptly define a number g(s), and declare
α(s) = µ(g(s)). This will ensure that α ≤pr µ.

I The desired ξ is defined as α⊕ ν. This guarantees that
ν ≤pr ξ ≤pr µ.

ν

µ

α
ξ := α⊕ ν

Requirements:

Re : pe does not reduce α to ν.

Qi : pi does not reduce µ to α⊕ ν.
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Re : pe does not reduce α to ν.

Qi : pi does not reduce µ to α⊕ ν.

Re-strategy. Suppose that the strategy starts working at a stage s0. Our
numbering α “copies” the top numbering µ:

α(s0) := µ(0), α(s0 + 1) := µ(1), α(s0 + 2) := µ(2), . . . ,

until we find a witness v ∈ ω such that α(v) 6= ν(pe(v)).
Such a witness will be eventually found, since:

(a) The function pe(x) is total.

(b) If v is never found, then one can deduce that µ ≤pr ν, which
contradicts the condition ν <pr µ.

When v is found, the requirement Re is forever satisfied.

Qi-strategy. Suppose that it starts working at a stage t0. The numbering
α “copies” the bottom numbering ν:

α(t0) := ν(0), α(t0 + 1) := ν(1), α(t0 + 2) := ν(2), . . . ,

until we find a witness v such that µ(v) 6= (α⊕ ν)(pi(v)).
If such a witness is never found, then one would be able to show that

µ ≤pr ν.
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Lattices
In the classical setting:

I Let S be a computable family. Then the Rogers semilattice RΣ0
1
(S)

is either one-element, or countably infinite. [Khutoretskii 1971]

I If the semilattice RΣ0
1
(S) is infinite, then it is not a lattice.

[Selivanov 1976]

In the punctual setting:

Proposition (B., Mustafa, and Ospichev)
Let S be an infinite punctual family satisfying the following condition:
If ν is an arbitrary punctual numbering of S, then its equivalence relation
ην , where

(k ην `) ⇔ ν(k) = ν(`),

is primitive recursive. Then the structure Rpr(S) is an infinite lattice.

Example. The family of constant functions

S = {λx.i | i ∈ ω}

satisfies the conditions of the proposition.
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The framework of punctual numberings is connected with:

I The theory of punctual structures: Some proofs for structures can
be transferred into the setting of numberings.

I Primitive recursive (punctual) equivalences, under primitive recursive
reducibility [B., San Mauro, Sorbi, and Ng].

Roughly speaking, these are similar to the classical connections:

I Theory of computable numberings ! computable structure theory:
I For example, the classical results of Goncharov (1980):

• For any finite N ≥ 2, there is a computable family S which has
precisely N pairwise non-equivalent, computable Friedberg
numberings.

• For any N ≥ 2, there is a computable structure with computable
dimension N .

I Theory of numberings ! positive equivalences, and computable
reducibility on them.
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