Redundancy of information: Lowering effective dimension

Jun Le Goh joint with Joseph Miller, Mariya Soskova, Linda Westrick

University of Wisconsin-Madison

Logic Colloquium 2021

Summary

We study the interaction between effective Hausdorff dimension

$$\dim(X) = \liminf_{n \to \infty} \frac{K(X \upharpoonright n)}{n} \in [0, 1]$$

and Besicovitch pseudo-distance

$$d(X,Y) = \limsup_{n \to \infty} \frac{|(X \upharpoonright n)\Delta(Y \upharpoonright n)|}{n} \in [0,1]$$

of binary sequences. Specifically, fix t < s in [0, 1].

- Given X with dim(X) = t, how close to X can we find Y with dim(Y) = s?
- Given Y with dim(Y) = s, how close to Y can we find X with dim(X) = t?

This line of inquiry was initiated by Greenberg, Miller, Shen, Westrick (henceforth GrMShW). We continue their work.

Kolmogorov complexity of strings

The Kolmogorov complexity $K(\sigma)$ of a finite binary string σ is the length of the shortest description of σ , where descriptions are given by a fixed universal Turing machine.

We are concerned with the asymptotics of $\frac{K(\sigma)}{|\sigma|}$ (where σ is an initial segment of some $X \in 2^{\omega}$), so it does not matter which universal Turing machine we fix.

Nor does it matter whether we use plain Kolmogorov complexity or prefix-free Kolmogorov complexity.

The entropy function $H : [0,1] \rightarrow [0,1]$

Given a string σ of length *n*, here is a way to describe it:

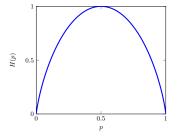
- (1) specify the number of 1s and 0s in σ (say *pn* and (1-p)n respectively); and
- (2) specify σ among the strings of length *n* with *pn* many 1s.

(1) can be done with $O(\log n)$ bits.

(2) can be done with H(p)n bits, where

$$H(p)=-p\log(p)-(1-p)\log(1-p)$$

is the entropy function.



Effective Hausdorff dimension of sequences

Definition (Lutz; Mayordomo)

The (effective Hausdorff) dimension of a sequence $X \in 2^{\omega}$ is

$$\dim(X) = \liminf_{n \to \infty} \frac{K(X \upharpoonright n)}{n} \in [0, 1].$$

Observations:

- Computable sequences have dimension 0.
- Martin-Löf random sequences have dimension 1.
- Flipping every bit in a sequence does not change its dimension.

Upper density and dimension

If a sequence X has upper density p, i.e.,

$$\limsup_{n \to \infty} \frac{|\{i < n : X(i) = 1\}|}{n} = p,$$

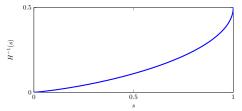
then we can bound the dimension of X in terms of p:

Proposition

A sequence with upper density p has dimension $\leq H(p)$.

Corollary

If a sequence has dimension s, then its upper density is at least $H^{-1}(s)$. (We use the branch $H^{-1}:[0,1] \to [0,1/2]$.)



Hamming distance and Besicovitch pseudo-distance

The Hamming distance $\Delta(\sigma, \tau)$ between strings $\sigma, \tau \in 2^n$ is the number of bits where they differ.

Definition The (Besicovitch pseudo-)distance between sequences $X, Y \in 2^{\omega}$ is

$$d(X,Y) = \limsup_{n \to \infty} \frac{\Delta(X \upharpoonright n, Y \upharpoonright n)}{n} \in [0,1].$$

Observations:

- The distance between X and $00\cdots$ is the upper density of X.
- If we modify X on a set of positions of upper density 0, then the result Y satisfies d(X, Y) = 0.

Distance versus dimension

Proposition (GrMShW) If dim(X) = t and dim(Y) = s, then $|s - t| \le H(d(X, Y))$.

In particular:

- 1. The previous proposition is the special case where Y is $00\cdots$.
- 2. If d(X, Y) = 0, then X and Y have the same dimension.

Proof idea: We can describe an initial segment of X by describing the corresponding initial segment of Y, as well as their differences. This shows that

 $t \leq s + H(d(X, Y)).$

Distance versus dimension

Proposition (GrMShW) If dim(X) = t and dim(Y) = s, then $|s - t| \le H(d(X, Y))$, i.e., $d(X, Y) \ge H^{-1}(|s - t|).$

Motivating Question

Is this the best possible bound?

In a weak sense, yes:

Proposition (GrMShW)

For every t < s, there are X and Y with dim(X) = t, dim(Y) = s, and $d(X, Y) \le H^{-1}(s - t)$ (hence $d(X, Y) = H^{-1}(s - t)$).

However, it is not the case that for every X of dimension t, there is some Y of dimension s such that $d(X, Y) \leq H^{-1}(s-t)$.

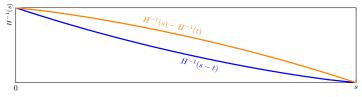
Increasing dimension (from t to s)

Observation (GrMShW)

Suppose 0 < t < s. There is some X of dimension t such that for every Y of dimension s, $d(X, Y) > H^{-1}(s - t)$.

To see this, fix X with dimension t and density $H^{-1}(t)$. For every Y with dimension s, the density of Y is at least $H^{-1}(s)$, so

$$d(X, Y) \ge H^{-1}(s) - H^{-1}(t) > H^{-1}(s-t).$$



Increasing dimension (from t to s)

Observation (GrMShW)

Fix X with dimension t and density $H^{-1}(t)$. For every Y with dimension s, the density of Y is at least $H^{-1}(s)$, so

$$d(X, Y) \ge H^{-1}(s) - H^{-1}(t).$$

The above is the worst that could happen when trying to increase the dimension of a given sequence X:

Theorem (GrMShW)

Suppose t < s. For every X of dimension t, there is some Y of dimension s such that $d(X, Y) \le H^{-1}(s) - H^{-1}(t)$.

Lowering dimension (from s to t)

Given Y of dimension s, how close to Y can we find some X of dimension t?

 $H^{-1}(s-t)$ is the closest that we can hope for, but this is not always attainable.

An issue arises if the information in Y is stored redundantly (so it is harder to erase).

Lowering dimension (from s to t): Redundancy in Y

(GrMShW) Take Y to be $Z \oplus Z$, where Z is a random.

Imagine you're trying to flip bits of Y in order to obtain an X of lower dimension.

In order for you to succeed, it must be hard to recover Y from X.

X can detect (for free) its inconsistencies, i.e., the *i* such that $X(2i) \neq X(2i+1)$. It is relatively cheap to fix all inconsistencies. Example:

 X 0000110100101101...

 Extra info
 001...

 \tilde{X} 0000110000001111...

If, in addition to the above, we specify the set of *i* such that $X(2i) = X(2i+1) \neq Z(i)$, then we can recover all of *Y*.

Lowering dimension (from s to t)

Theorem (GrMShW)

For each Y of dimension s and each t < s, there is some X of dimension t with $d(X, Y) \le H^{-1}(1 - t)$.

This was proved using the corresponding result for strings:

Proposition (GrMShW)

For each $\sigma \in 2^n$ and $t \in [0,1]$, there is some $\tau \in 2^n$ such that

$$\frac{K(\tau)}{n} \leq t + O(\log n/n)$$
$$\frac{\Delta(\sigma, \tau)}{n} \leq H^{-1}(1-t).$$

If s = 1, the above theorem yields an optimal result.

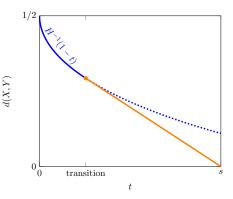
Lowering dimension (from s < 1 to t): Another strategy

If s < 1, there is another strategy for finding a nearby X of dimension t.

The previous theorem was proved by applying the previous proposition to each interval in Y to obtain X. Instead:

- We leave some intervals in Y unchanged, and
- apply the previous proposition to the other intervals to obtain strings of dimension < t.</p>

If t is sufficiently close to s, then this strategy is better.

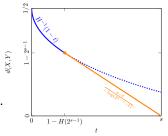


Lowering dimension (from s to t)

Theorem (GoMSoW)

For each Y of dimension s and each t < s, there is some X of dimension t such that

$$d(X,Y) \leq \begin{cases} H^{-1}(1-t) & \text{if } t \leq 1-H(2^{s-1}) \\ \frac{s-t}{-\log(2^{1-s}-1)} & \text{otherwise} \end{cases}$$



Observations:

- 1. For s = 1, this specializes to the previous theorem of GrMShW.
- 2. The above piecewise function is continuous, and even differentiable.

Corollary (GoMSoW)

For each Y of dimension s and every $\epsilon > 0$, there is some t < s and some X of dimension t such that $d(X, Y) \leq \epsilon$.