Weak König's Lemma in the absence of Σ^0_1 induction

Leszek Kołodziejczyk University of Warsaw

(joint work with Marta Fiori Carones, Tin Lok Wong, and Keita Yokoyama)

Logic Colloquium July 2021

Background: reverse mathematics

Reverse mathematics studies the strength of axioms needed to prove mathematical theorems. This is done by deriving implications between the theorems and set existence principles expressed in the language of second-order arithmetic, which has:

- \blacktriangleright vbles x, y, z, . . . , i, j, k . . . for natural numbers,
- vbles X, Y, Z, ... for sets of naturals,
- ▶ non-logical symbols $+, \cdot, 2^x, \leq, 0, 1, \in$.

Often, the theorems studied are Π_2^1 of the form $\forall X \exists Y \psi$, and their strength is related to the difficulty of computing Y given X.

The implications are proved in a relatively weak base theory.

The usual base theory, and an important axiom

The usual base theory, RCA₀, has the following axioms:

- \blacktriangleright +, \cdot , 2^x etc. have their usual basic properties.
- Δ_1^0 comprehension: if $\bar{X} = X_1, \dots, X_k$ are sets and $\psi(x, \bar{X})$ is computable relative to \bar{X} , then $\{n : \psi(n, \bar{X})\}$ is a set.
- ▶ Σ_1^0 induction: if \overline{X} are sets and $\psi(\mathbf{x}, \overline{X})$ is c.e. relative to \overline{X} , then $\psi(\mathbf{0}, \overline{X}) \land \forall n (\psi(n, \overline{X}) \Rightarrow \psi(n + 1, \overline{X})) \Rightarrow \forall n \psi(n, \overline{X})$.

Possibly the most important theory in reverse mathematics, WKL₀, is axiomatized by RCA₀ and Weak König's Lemma WKL: "Every infinite tree in $\{0, 1\}^{\mathbb{N}}$ has an infinite path".

This says essentially: "The interval [0, 1] is Heine-Borel compact". Or "For every set X there is a set Y of PA degree relative to X".

Properties of WKL

 RCA_0 proves: $WKL_0 \equiv a$ plethora of theorems, from compactness of first-order logic to the Peano existence thm for ODE's.

WKL is not provable in RCA_0 . On the other hand:

Theorem (Harrington 1977, independently Ratajczyk 1980's) WKL₀ is Π_1^1 -conservative over RCA₀, i.e. every Π_1^1 sentence provable in WKL₀ is also provable in RCA₀.

The proof is by adding a path to an infinite 0-1 tree T in a countable model of RCA_0 , which is done via forcing with infinite subtrees of T.

A weaker base theory

In an alternative, weaker base theory RCA₀^{*}, one replaces Σ_1^0 induction with Δ_1^0 induction: if \bar{X} are sets and $\psi(x, \bar{X})$ is computable relative to \bar{X} , then $\psi(0, \bar{X}) \land \forall n (\psi(n, \bar{X}) \Rightarrow \psi(n + 1, \bar{X})) \Rightarrow \forall n \psi(n, \bar{X}).$

- Used to identify some theorems that are equivalent to Σ₁⁰ induction (e.g. "every non-zero poly has finitely many roots" [Simpson-Smith 1986]) and some that do not need it (e.g. Friedberg-Muchnik Thm [Chong-Mourad 1992]).
- Turns out to be useful in understanding some aspects of reverse mathematics over RCA₀ (e.g. [Belanger 20XX]).

Weak König's Lemma over RCA₀*

- The theory obtained by adding WKL to RCA_0^* is known as WKL_0^* .
- Theorem (Simpson-Smith 1986) WKL₀^{*} is Π_1^1 -conservative over RCA₀^{*}.

The proof is a forcing argument similar to the one over RCA₀.

However: today's talk is about a property that models of $\mathsf{WKL}_0^*+\neg \mathsf{I}\Sigma_1^0$ have but those of WKL_0 do not.

The isomorphism theorem

Theorem

Let (M, \mathcal{X}) , (M, \mathcal{Y}) be countable models of WKL₀^{*}, and assume that $(M, \mathcal{X} \cap \mathcal{Y}) \models \neg I\Sigma_1^0$. Then $(M, \mathcal{X}) \simeq (M, \mathcal{Y})$.

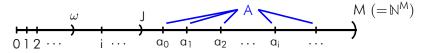
- This can be seen as a second-order generalization of results due to Kossak and Kaye saying that models of IΔ₁ + ¬IΣ₁ have "many" automorphisms.
- There are many ω-models of WKL₀ ("Scott sets") that are neither isomorphic nor elementarily equivalent to one another.
- Any countable $(M, W) \models \text{RCA}_0$ will have extensions $(M, \mathcal{X}), (M, \mathcal{Y})$ satisfying WKL₀ with $(M, \mathcal{X}) \not\equiv (M, \mathcal{Y})$.

Plan for rest of talk

- Brief comment about the proof of the isomorphism theorem
- Consequences for WKL₀^{*} in the absence of $I\Sigma_1^0$.
- Consequences for reverse mathematics over RCA₀.

The isomorphism theorem: ideas behind proof

Because (M, X ∩ Y) satisfies ¬lΣ₁⁰ there is a Σ₁⁰-definable proper cut J closed under x → 2^x and an infinite set A ∈ X ∩ Y s.t. A = {a_i : i ∈ J} enumerated in increasing order.



We use back-and-forth. At each step, we have finite tuples r̄, R in the domain, s̄, S̄ in the range of the partial iso. The invariant is roughly: for each Δ₀ formula δ, each i, k ∈ J,

$$(\mathsf{M},\mathcal{X})\models\delta(\mathsf{a}_i,k,\bar{r},\bar{R}) \text{ iff } (\mathsf{M},\mathcal{Y})\models\delta(\mathsf{a}_i,k,\bar{s},\bar{S}).$$

WKL needed to find "globally good" second-order element to add in the inductive step, based on "locally good" ones that are easier to find directly from inductive assumption.

Consequences for WKL₀^{*}: the analytic hierarchy

For a set W, let $W_k = \{n : \langle k, n \rangle \in W\}.$

If $(M, \mathcal{X}) \models WKL_0^*$ and $A \in \mathcal{X}$, then there exists $W \in \mathcal{X}$ such that $W_0 = A$ and $(M, \{W_k : k \in M\}) \models WKL_0^*$. We say that W codes a model of WKL_0^* . If it satisfies $\neg I\Sigma_1^0$, then by the isomorphism theorem it is elementarily equivalent to $(M, \mathcal{X})!$

Corollary

For any formula $\psi(\bar{x}, \bar{X})$, TFAE provably in WKL₀^{*} + $\neg I\Sigma_1^0$:

- (i) $\psi(\bar{\mathbf{x}},\bar{\mathbf{X}})$,
- (ii) "there exists a coded model of WKL_0^* + $\neg I\Sigma_1^0 + \psi(\bar{x},\bar{X})$ ",
- (iii) "there is no coded model of WKL_0^* + $\neg I\Sigma_1^0$ + $\neg \psi(\bar{x},\bar{X})$ ".

Thus, in WKL_0^* + $\neg l \Sigma_1^0$ the analytic hierarchy collapses to $\Delta_1^1.$

Consequences for WKL₀^{*}: conservativity

Corollary

Let ψ be a Π_2^1 statement. Then:

(i) ψ is Π₁¹-conservative over RCA₀^{*} + ¬IΣ₁⁰ iff WKL₀^{*} + ¬IΣ₁⁰ ⊢ ψ.
(ii) if ψ is Π₁¹-conservative over RCA₀^{*}, then WKL₀^{*} + ¬IΣ₁⁰ ⊢ ψ.

In contrast, the set of Π_2^1 sentences ψ that are Π_1^1 -conservative over RCA₀ is Π_2 -complete. [Towsner 2015]

It also contains some combinatorially natural principles that do not follow from WKL_0 , such as the cohesive set principle COH:

"for every family $\{R_x : x \in \mathbb{N}\}$ of subsets of \mathbb{N} , there exists infinite $C \subseteq \mathbb{N}$ s.t. for each x, either $\forall^{\infty}z \in C (z \in R_x)$ or $\forall^{\infty}z \in C (z \notin R_x)$ ".

Consequences for WKL₀^{*}: failure of low basis

Corollary

If $(M, \mathcal{X}) \models RCA_0^*$, and $A \in \mathcal{X}$ is such that $\neg I\Sigma_1^A$ holds, then there is a computable in A infinite 0-1 tree T such that no model $(M, \mathcal{Y}) \models RCA_0^*$ contains any infinite path through T that is arithmetically definable in A.

- This is a failure of the low basis theorem: T is Δ₁(A), but has not just no low Δ₂(A) path, but even no arithmetically-in-A definable one, at least one contained in a model of RCA₀^{*}.
- In contrast, the low basis theorem is provable in RCA₀. [Hájek-Kučera 1989].

Back over RCA₀

A major problem in reverse mathematics: describe the Π_1^1 consequences of RCA₀ + RT₂². (Here RT₂² is Ramsey's Thm for pairs and two colours.)

 $RCA_0 + RT_2^2$ is Π_1^1 -conservative over $I\Sigma_2^0$ and proves $I\Delta_2^0$. So, it remains to characterize its behaviour over $I\Delta_2^0 + \neg I\Sigma_2^0$.

But if $(M, \mathcal{X}) \models RCA_0 + I\Delta_2^0 + \neg I\Sigma_2^0$, then $(M, \Delta_2^0 \text{-Def}(M, \mathcal{X})) \models RCA_0^0 + \neg I\Sigma_1^0!$

Is there a neat statement ensuring that Δ_2^0 -Def satisfies WKL?

A closer look at COH

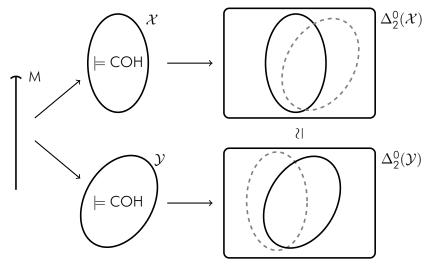
```
Provably in RCA<sub>0</sub> + I\Delta_2^0, the statement
"The \Delta_2^0-definable sets satisfy WKL"
or
```

"For every set X, there is Y such that Y' has PA degree relative to X' " is equivalent to COH! [Belanger 20XX]

So, the isomorphism theorem for WKL_0^* gives:

Corollary

Let $(M, \mathcal{X}), (M, \mathcal{Y})$ be countable models of $RCA_0 + I\Delta_2^0 + COH$. If $(M, \mathcal{X} \cap \mathcal{Y}) \models \neg I\Sigma_2^0$, then $(M, \Delta_2^0 \text{-Def}(M, \mathcal{X})) \simeq (M, \Delta_2^0 \text{-Def}(M, \mathcal{Y}))$.



A consequence of RT_2^2

 RT_2^2 says: "For every f: $[\mathbb{N}]^2 \to 2$ there is a homogeneous set H".

Consider the following sentence γ :

"For every Z, if $\neg I\Sigma_2^Z$, then for every f: $[\mathbb{N}]^2 \rightarrow 2$ with $f \leq_T Z$ and every set Y such that Y' has PA degree relative to Z', there is a Δ_2^0 -set \widetilde{H} homogeneous for f s.t. $(\widetilde{H} \oplus Z)' \leq_T Y'$."

(For those who care: γ says that if $I\Sigma_2^0$ fails then the first-jump control argument of [CJS 2001] has to work for adding homogeneous sets for 2-colourings of pairs.)

 $\triangleright \gamma \text{ is } \Pi_1^1, \text{ in fact } \forall \Pi_5^0.$

► $RCA_0 + RT_2^2 \vdash \gamma$. (Clear over $I\Sigma_2^0$. Over $I\Delta_2^0 + \neg I\Sigma_2^0$, argue using $RCA_0 + RT_2^2 \vdash COH$ and the iso thm for COH.)

► If $RCA_0 + I\Delta_2^0 \vdash \gamma$, then $RCA_0 + RT_2^2$ is Π_1^1 -conservative over $I\Delta_2^0$.

Characterizing conservativity of RT_2^2

Corollary $RCA_0 + RT_2^2$ is Π_1^1 -conservative over $RCA_0 + I\Delta_2^0$ iff $RCA_0 + RT_2^2$ is $\forall \Pi_5^0$ -conservative over $RCA_0 + I\Delta_2^0$.

Note:

- ► $RCA_0 + RT_2^2$ is $\forall \Pi_3^0$ -conservative over $RCA_0 + I\Delta_2^0$. [PY 2018]
- $\begin{array}{l} \blacktriangleright \ RCA_0 + RT_2^2 \text{ is } \forall \Pi_4^0 \text{-conservative over} \\ RCA_0 + I\Delta_2^0 + \{WO(\omega), WO(\omega^\omega), \ldots\}. \ \text{(Essentially [CSY 2017].)} \end{array}$
- ▶ $RCA_0^* + RT_2^2$ is $\forall \Pi_3^0$ but not $\forall \Pi_4^0$ -conservative over RCA_0^* . [KKY 20XX]

Another result on conservativity

Theorem (Towsner 2015)

For each n, the set of Π_2^1 sentences ψ that are Π_1^1 -conservative over RCA₀ + $I\Sigma_n^0$ is Π_2 -complete.

Towsner asked whether this also works for $I\Delta_n^0$ in place of $I\Sigma_n^0$. Much of our analysis of RT_2^2 carries over to any Π_2^1 sentence, giving:

Corollary (of the isomorphism thm)

For each n, the set of Π_2^1 sentences ψ that are Π_1^1 -conservative over $\text{RCA}_0^* + |\Delta_n^0 + \neg |\Sigma_n^0$ is c.e.

However, a completely different argument shows:

Theorem

For each n, the set of Π_2^1 sentences ψ that are Π_1^1 -conservative over RCA₀^{*} + $I\Delta_n^0$ is Π_2 -complete.