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Question by Downey, Miller, Nies, Yu

The map G takes c to the number of K -trivial streams with constant c.

What is the arithmetical complexity of G?

. . . or equivalently

How hard is to compute G?



Trivial sequences

A stream is random if it has high initial segment complexity.

To describe the first n bits of the sequence you need
to use n bits (modulo a constant)

On the other end of the spectrum:

A stream is trivial if the complexity of its first n bits is
as low as the complexity of 0n.



Chaitin and Solovay in 1975

Chaitin asked if there are non-computable
streams whose initial segment complexity
is as low as a computable stream.

Solovay gave a positive answer.

Draft of a paper (or series of papers) on Chaitin’s
work. Unpublished notes, May 1975. 215 pages.



The world of K -trivial streams

; Computable from the halting problem i.e. ∆0
2 (Chaitin 70s)

; Incomplete, and in fact low (Downey/Hirschfeldt/Nies/Stephan)

; Downward closed under ≤T (Hirschfeldt/Nies 2005)

; Form an ideal in the Turing degrees.



K -trivial streams in classical computability theory

Provide a ‘natural’ solution to Post’s problem.

A = {n | ∃e, s
(

We,s ∩ As = ∅ ∧ n > 2e ∧ n ∈ We,s︸ ︷︷ ︸
Post’s simple set

∧
∑

n<j<s 2−Ks(j) < 2−e)}

Scott sets: Turing incomparability using the K -trivial degrees.

(Kučera and Slaman)



Cumulative hierarchy of K-trivial streams

A stream X is K -trivial if K (X �n) ≤ K (n) + c for all n, some c.

K -trivial streams are stratified in a hierarchy of length ω

. . . whose c-level contains the K -trivial streams with
constant c.



Question by Downey, Miller, Nies, Yu

The map G takes c to the number of K -trivial strings with constant c.

What is the arithmetical complexity of G?

. . . or equivalently

How hard is to compute G?



Basic facts about G, by DMNY

I Computable from 0(3). . . i.e. ∆0
4

I Not computable i.e. not ∆0
1

I Not computable from the halting problem, i.e. not ∆0
2

Is it computable from 0(2) i.e. is it ∆0
3?



The classes of Kc-trivial streams

I They are uniformly Π0
1 in the halting set

I The set of infinite paths through a 0′-computable tree.

I The width of these trees is computably bounded since

|{σ ∈ 2n | K (σ) ≤ K (|σ|) + c}| < 2c

. . . by the coding theorem



Number of paths through trees of bounded width

I The number of infinite paths through a tree T with bounded
width can be computed from T ′′.

I This is optimal!

I If a family of trees is computable from a low2 oracle A then
the number of paths is computable from 0(2).

Oracle A is low2 if A′′ is computable from 0(2); Σ0
2(A) ⊆ ∆0

3.



Representing the Kc-trivial classes with simpler trees

Theorem (B. and Tom Sterkenburg)

Given a ∆0
2 tree T which only has Kc-trivial paths we can

compute the index of another Σ0
1 tree which is K -trivial and has

the same infinite paths as the original tree.

The new trees have trivial initial segment complexity.

Fact: 0(2) can compute a low2 index of a Kc-trivial stream given
c and the ∆0

2 index of the stream.



Computation of G(c) from 0(2)

I Get the index of the original ∆0
2 tree representing the class

Kc-trivial.

I Compute the index of the K -trivial tree representing this
class.

I Use 0(2) to compute a low2-ness index of the new tree.

I Use 0(2) again to compute the number of infinite paths
through this tree.

I This is G(c)



A related class: low for K streams

If a computer is given access to a powerful oracle, it will achieve
better compression for many strings.

X is called low for K if K X = K .

. . . . . . if as far as prefix-free complexity is concerned, it
is not better than a computable oracle.

This class was defined by Muchnik in 1999, who also exhibited
non-computable elements in it.



Hierarchy of low for K and complexity

I Low for K streams are stratified in a cumulative hierarchy
of finite classes.

I Hirschfeldt and Nies showed that they coincide with the
K -trivial streams.

I Our methodology applies to this class, showing that

. . . the corresponding function giving the cardinality of
the hierarchy classes is ∆0

3.



Applications

A consequence of the main result is that 0′′ can obtain the
indices of the Kc-trivial strings.

This can be used to show that a number of K -related objects
have lower complexity.

For example, gap functions for K -triviality.



Gap functions for K -triviality

These are non-decreasing unbounded functions f such that

∀n [K (X �n) ≤ K (n) + f (n) + c]⇒ X is K -trivial.

I Constructed by Csima and Montalbán in 2006

I Used to obtain minimal pairs in the degrees of randomness

I Complexity: ∆0
4

I Downey raised the question about their complexity



Complexity of gap functions

Theorem (Barmpalias/Baartse and Bienvenu/Merkle/Nies)

If f is ∆0
2 unbounded and non-decreasing then there are

uncountably many streams X such that

K (X �n) ≤ K (n) + f (n) for all n.

Theorem (Barmpalias and Martijn Baartse)

There is a ∆0
3 gap function for K -triviality.
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