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Realizer

Definition

A multi-valued function f :⊆ X ⇒ Y on represented spaces
(X , δX ) and (Y , δY ) is realized by a function F :⊆ NN → NN if

δY F (p) ∈ f δX (p)

for all p ∈ dom(f δX ). We write F ` f in this situation.

NN -

X -

F

f

?

δYδX

NN

Y
?



Weihrauch Reducibility

Definition (Weihrauch 1990)

Let f and g be multi-valued maps on represented spaces.

I f ≤W g (f Weihrauch reducible to g), if there are computable
functions H,K :⊆ NN → NN such that for all G

G ` g =⇒ H〈id,GK 〉 ` f .

That means that there is a uniform way to transform each realizer
G of g into a realizer F of f in the given way.
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Reduction

I F (x) = H〈x ,GK (x)〉 for all admissible inputs x .
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Algebraic Operations in the Weihrauch Lattice

Definition

Let f :⊆ X ⇒ Y and g :⊆W ⇒ Z be multi-valued maps. Then
we consider the natural operations

I f × g :⊆ X ×W ⇒ Y × Z (product)

I f t g :⊆ X tW ⇒ Y t Z (coproduct)

I f u g :⊆ X ×W ⇒ Y t Z (sum)

I f ∗ :⊆ X ∗ ⇒ Y ∗, f ∗ =
⊔∞

i=0 f i (star)

I f̂ :⊆ XN ⇒ Y N, f̂ = X∞i=0 f (parallelization)

Theorem (B. and Gherardi, Pauly 2009)

Weihrauch reducibility induces a (bounded) lattice with the sum u
as infimum and the coproduct t as supremum and parallelization
and the star operation as closure operators.
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Embedding of the Medvedev Lattice

Definition

Let A ⊆ NN.

1. By cA : NN ⇒ NN, p 7→ A we denote the constant
multi-valued function with value A ⊆ NN.

2. By id|A :⊆ NN → NN we denote the identity restricted to A.

Proposition

Let A,B ⊆ NN, A⊕ B = 〈A× B〉, A⊗ B = 0A ∪ 1B. Then

I A≤M B ⇐⇒ cA≤W cB ⇐⇒ id|B ≤W id|A,

I cA⊕B ≡W cA × cB ≡W(cA t cB)∗≡W ̂cA t cB ,

I cA⊗B ≡W cA u cB ,

I id|A⊕B ≡W id|A × id|B ,

I id|A⊗B ≡W id|A t id|B .



Embedding of the Medvedev Lattice

Definition

Let A ⊆ NN.

1. By cA : NN ⇒ NN, p 7→ A we denote the constant
multi-valued function with value A ⊆ NN.

2. By id|A :⊆ NN → NN we denote the identity restricted to A.

Proposition

Let A,B ⊆ NN, A⊕ B = 〈A× B〉, A⊗ B = 0A ∪ 1B. Then

I A≤M B ⇐⇒ cA≤W cB ⇐⇒ id|B ≤W id|A,

I cA⊕B ≡W cA × cB ≡W(cA t cB)∗≡W ̂cA t cB ,

I cA⊗B ≡W cA u cB ,

I id|A⊕B ≡W id|A × id|B ,

I id|A⊗B ≡W id|A t id|B .



Embedding of the Medvedev Lattice

Definition

Let A ⊆ NN.

1. By cA : NN ⇒ NN, p 7→ A we denote the constant
multi-valued function with value A ⊆ NN.

2. By id|A :⊆ NN → NN we denote the identity restricted to A.

Proposition

Let A,B ⊆ NN, A⊕ B = 〈A× B〉, A⊗ B = 0A ∪ 1B. Then

I A≤M B ⇐⇒ cA≤W cB ⇐⇒ id|B ≤W id|A,

I cA⊕B ≡W cA × cB ≡W(cA t cB)∗≡W ̂cA t cB ,

I cA⊗B ≡W cA u cB ,

I id|A⊕B ≡W id|A × id|B ,

I id|A⊗B ≡W id|A t id|B .



Closure Operators and Reducibilities

Remark

There is a vague analogy between versions of Weihrauch
reducibilities induced by closure operators and computability
theoretic reducibilities:

Closure operation Reducibility
f ≤W g many-one reducibility

f ≤W g∗ weak truth-table reducibility

f ≤W ĝ Turing reducibility

Question

Can this analogy be made more precise?

Note: we already have an embedding of Turing degrees into
parallelizable Weihrauch degrees.
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Realizing Theorems

Definition

Any theorem T of form

(∀x ∈ X )(∃y ∈ Y ) (x ∈ D =⇒ P(x , y))

is identified with F :⊆ X ⇒ Y with dom(F ) := D and

F (x) := {y ∈ Y : P(x , y)}.

Definition (Choice)

The choice statement

(∀ closed A ⊆ X )(∃x ∈ X )(A 6= ∅ =⇒ x ∈ A)

translates into the choice operation

CX :⊆ A−(X )⇒ X ,A 7→ A

where A−(X ) := {A ⊆ X : A closed} is equipped with the upper
Fell topology.
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Weak Kőnig’s Lemma

Proposition

WKL≡W C{0,1}N ≡W C[0,1]n for all n ≥ 1.

Theorems that have been studied in this context include:

I Weak Kőnig’s Lemma, Hahn-Banach Theorem
(Gherardi, Marcone 2008)

I Intermediate Value Theorem, Baire Category Theorem,
Banach’s Inverse Mapping Theorem, Open Mapping Theorem,
Closed Graph Theorem, Uniform Boundedness Theorem
(B., Gherardi 2009)

I Nash Equilibria, Linear Inequalities (Pauly 2009)

I Hilbert’s Basis Theorem (de Brecht 2010)

I Bolzano-Weierstraß Theorem (B., Gherardi, Marcone 2011)

I Radon-Nikodym Theorem (Weihrauch, Hoyrup, Rojas 2011)
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Computable Analysis

weakly computable

limit computableCountable Choice

Compact Choice

Discrete Choice
Baire Category Theorem
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The Choice Operation

Theorem (B. de Brecht and Pauly 2010)

I f ≤ C{0} ⇐⇒ f is computable,

I f ≤W CN ⇐⇒ f comp. with finitely many mind changes,

I f ≤W C{0,1}N ⇐⇒ f is non-deterministically computable,

I f ≤W ĈN ⇐⇒ f is limit computable,

I f ≤W CNN ⇐⇒ f is Borel measurable.



Trees of Rational Complexes

Definition

I A rational complex is a set R = {B[x1, r1], ...,B[xn, rn]} of
finitely many closed balls B[xi , ri ] in Rn with rational centers
xi ∈ Qn and radii ri ∈ Q such that

⋃
R is connected.

I By CQn we denote the set of rational complexes.

I We write A b B if A is compactly included in B, i.e. A ⊆ B◦

for A,B ⊆ Rn.

I A tree of rational complexes is a pair (T , f ) of a finitely
bounded tree T ⊆ N∗ and a function f : T → CQn such that
for all distinct v ,w ∈ N∗

I v v w =⇒
⋃

f (w) b
⋃

f (v),
I |v | = |w | =⇒

⋃
f (v) ∩

⋃
f (w) = ∅.

I By A(T ,f ) :=
⋂∞

n=0

⋃
w∈T∩Nn

⋃
f (w) we denote the closed set

A(T ,f ) ⊆ Rn represented by (T , f ).
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Representation by Trees of Rational Complexes

Proposition

The map
(T , f , b) 7→ A(T ,f )

that maps (T , f ) together with a bound b to A(T ,f ), is computable
and has a multi-valued computable right inverse, restricted to
closed sets A ⊆ [0, 1]n.

Corollary

For every non-empty co-c.e. closed set A ⊆ [0, 1]n there is a
computable sequence (Ai )i∈N of bi-computable compact sets
Ai ⊆ [−1, 2]n that is compactly decreasing, i.e. Ai+1 b Ai for all
i ∈ N and such that A =

⋂
i∈N Ai .
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Finding Connectedness Components

Lemma

Let (T , f ) be a tree of rational complexes. Then the sets

Cp :=
⋂∞

i=0

⋃
f (p|i )

for p ∈ [T ] are exactly all connectedness components of A(T ,f ).

Definition

By Conn : An ⇒ An we denote the map with

Conn(A) := {C : C is a connectedness component of A}

for every n ≥ 1, where An dentoes the set of non-empty closed
subsets A ⊆ [0, 1]n represented with negative information.

Theorem

Conn≡W WKL for n ≥ 1.
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Computability Properties of Connectedness Components

Corollary (le Roux, Ziegler 2009)

I Any component of a co-c.e. closed set A ⊆ [0, 1]n with only
finitely many components is co-c.e. closed.

I A non-empty co-c.e. closed set A ⊆ [0, 1]n without co-c.e.
closed component has continuum many components.

Corollary (Open problem of le Roux, Ziegler 2009)

There are co-c.e. closed sets A ⊆ [0, 1]n with only countably many
connectedness components one of which is not co-c.e. closed.

Corollary

Every non-empty co-c.e. closed set A ⊆ [0, 1]n has a connectedness
component Cp with a low description p, in particular Cp is the set
of cluster points of a computable sequence.
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The Brouwer Fixed Point Theorem

Definition

I By Cn := C([0, 1]n, [0, 1]n) we denote the set of continuous
functions f : [0, 1]n → [0, 1]n.

I By BFTn : Cn ⇒ [0, 1]n we denote the operation defined by
BFTn(f ) := {x ∈ [0, 1]n : f (x) = x} for n ∈ N.

I By CCn :⊆ An ⇒ [0, 1]n we denote the operation defined by
CCn(A) := A for all non-empty connected closed A ⊆ [0, 1]n

and n ∈ N. We call CCn connected choice (of dimension n).

Theorem

BFTn≡W CCn for all n ∈ N.



The Brouwer Fixed Point Theorem

Definition

I By Cn := C([0, 1]n, [0, 1]n) we denote the set of continuous
functions f : [0, 1]n → [0, 1]n.

I By BFTn : Cn ⇒ [0, 1]n we denote the operation defined by
BFTn(f ) := {x ∈ [0, 1]n : f (x) = x} for n ∈ N.

I By CCn :⊆ An ⇒ [0, 1]n we denote the operation defined by
CCn(A) := A for all non-empty connected closed A ⊆ [0, 1]n

and n ∈ N. We call CCn connected choice (of dimension n).

Theorem

BFTn≡W CCn for all n ∈ N.



The Brouwer Fixed Point Theorem

Definition

I By Cn := C([0, 1]n, [0, 1]n) we denote the set of continuous
functions f : [0, 1]n → [0, 1]n.

I By BFTn : Cn ⇒ [0, 1]n we denote the operation defined by
BFTn(f ) := {x ∈ [0, 1]n : f (x) = x} for n ∈ N.

I By CCn :⊆ An ⇒ [0, 1]n we denote the operation defined by
CCn(A) := A for all non-empty connected closed A ⊆ [0, 1]n

and n ∈ N. We call CCn connected choice (of dimension n).

Theorem

BFTn≡W CCn for all n ∈ N.



The Brouwer Fixed Point Theorem

Definition

I By Cn := C([0, 1]n, [0, 1]n) we denote the set of continuous
functions f : [0, 1]n → [0, 1]n.

I By BFTn : Cn ⇒ [0, 1]n we denote the operation defined by
BFTn(f ) := {x ∈ [0, 1]n : f (x) = x} for n ∈ N.

I By CCn :⊆ An ⇒ [0, 1]n we denote the operation defined by
CCn(A) := A for all non-empty connected closed A ⊆ [0, 1]n

and n ∈ N. We call CCn connected choice (of dimension n).

Theorem

BFTn≡W CCn for all n ∈ N.



Connected Choice is Reducible to BFT

Lemma

CCn≤W BFTn for all n.

Proof.

I Given a connected closed set ∅ 6= A ⊆ [0, 1]n we construct a
tree of rational complexes (T , f ) that represents A.

I Since A is connected, there is a unique infinite path in T that
we can find.

I This paths yields a computable sequence (Ai ) of
bi-computable, effectively path-connected closed sets Ai that
decreases compactly such that A =

⋂∞
i=0 Ai .

I We use the sequence (Ai ) to construct functions
gi : [0, 1]n → [0, 1]n and f := id + 2−4

∑∞
i=0 gi with the

property that A is the set of fixed points of f .
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BFT is Reducible to Connected Choice

Lemma

BFTn≤W CCn for all n.

Proof.

I By Fixn : Cn → An, f 7→ {x ∈ [0, 1]n : f (x) = x} we denote
the fixed point map of dimension n.

I We note that CCn ◦ Conn ◦ Fixn(f ) ⊆ BFTn(f ).

I If we can prove that Conn ◦ Fixn is computable, then
BFTn≤W CCn follows.

I Given f we can compute A = Fixn(f ) = (f − id[0,1]n)−1{0}.
I Hence we can compute a tree (T , f ) of rational complexes

representing A.

I Within this tree we can find an infinite path and hence a
connectedness component since ind(f ,R) is computable for
rational complexes R (as proved by Joe S. Miller 2002).
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Fixability

Theorem (Joe S. Miller 2002)

A set A ⊆ [0, 1]n is the set of fixed points of a computable function
f : [0, 1]n → [0, 1]n if and only if it is a non-empty co-c.e. closed
set that contains a co-c.e. closed connectedness component.

Proposition

(Fixn,Conn ◦ Fixn) is computable and has a single-valued
computable right inverse for all n ∈ N.

Proof.

Given (A,C ) such that C is a connectedness component of A we
can find f such that C = Fixn(f ) and g such that g−1{0} = A.
Then h with

h(x) = (1− g(x))x + f (x)g(x)

is such that Fixn(f ) = A.
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Universality of Dimension Three

Proposition

The map

A 7→ (A× [0, 1]× {0}) ∪ (A× A× [0, 1]) ∪ ([0, 1]× A× {1})

is computable and maps any non-empty closed A ⊆ [0, 1] to a
connected non-empty closed A ⊆ [0, 1]3.

Theorem

For n ≥ 3
CCn≡W BFTn≡W WKL ≡ C[0,1].
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Dimension Two

Proposition

The map
A 7→ (A× [0, 1]) ∪ ([0, 1]× A)

is computable and maps any non-empty closed A ⊆ [0, 1] to a
connected non-empty closed A ⊆ [0, 1]2.

Proposition

1
2 C[0,1]≤W CC2≤W C[0,1].

Corollary (Baigger 1985, Orevkov 1963)

I There exists a computable function f : [0, 1]2 → [0, 1]2 that
has no computable fixed point x ∈ [0, 1]2.

I There exists a non-empty connected co-c.e. closed subset
A ⊆ [0, 1]2 without computable point.
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Aspects of Dimension

Proposition

CC0 <W CC1 <W CC2≤W CC3≡W CCn for all n ≥ 3.

I CC0 is computable.

I CC1≡W BFT1≡W IVT is non-uniformly computable, but not
uniformly computable.

I CC2 is not non-uniformly computable
(by the Baigger/Orevkov example).

I CCn is computably complete (equivalent to WKL) for n ≥ 3.

Conjecture

CC2 <W CC3.

Theorem (Idempotency)

CC1 <W CC1 × CC1 <W CC2.
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