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The Computably Enumerable Sets, €

e W, is the domain of the eth Turing machine.

e ({W,:e e w},c) are the c.e. (r.e.) sets under inclusion,
€.

e X is automorphicto Y, X = Y, iff there is an
automorphism of ¢ such that ®(X) =Y.



Questions Degrees Questions Again Examples D-Maximal Sets Classification Questions Yet Again
0000 00000 o] 000000 000 00000000 o]

Main Question

Question (Completeness)
Which c.e. sets are automorphic to complete sets?
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The Scott Rank of € is w{X + 1

Theorem (Cholak, Downey, Harrington)
There is an c.e. set A such that the set

Ix = {i: A is automorphic to W;}

is 31 -complete.
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Main Open Question, Again

Look at the index set of all A in the orbit of A with the hopes
of finding some answers. The index set of such A is in 1.

Question (Completeness)
Which c.e. sets are automorphic to complete sets?
The orbits in the previous theorem all contain complete sets.

Question
Is the above question an arithmetical question?
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Prompt Sets

Definition

A'is promptly simple iff there is computable function p such
that for all e, if W, is infinite then there is a x and s with

x € (Weat sN Ap(s))-

Definition

A c.e. set A is prompt iff there is computable function p such
that for all e, if W, is infinite then there is a x and s with

X € Weatsand Ag t x #= Ay 1 X.

Theorem (Cholak, Downey, Stob)
All prompt simple sets are automorphic to a complete set.
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Almost Prompt Sets

Definition

X = (Wel - Wez) U (WQ?, - We4) U... (Wezn71 - Wezn) |ffX |S
2n-c.e.and X is 2n + 1-c.e. iff X = Y U W,, where Y is 2n-c.e.
Definition

Let X! be the eth n-c.e. set. A is almost prompt iff there is a

computable nondecreasing function p(s) such that for all e
and n if X}' = A then (3x)(3s)[x € X's and x € Ap(y) .

Lemma
Prompt implies almost prompt. So every Turing complete set
is almost prompt.

Theorem (Harrington, Soare)
All almost prompt sets are automorphic to a complete set.



Degrees
00e00

Tardy Sets

Definition
D is 2-tardy iff for every computable nondecreasing function
p(s) there is an e such that X7 = D and (Vx)(Vs)[if x € X2

then x & Dy (5)].

Theorem (Harrington, Soare)
There are realizable € definable properties Q (D) and
P(D,C) such that
e Q(D) implies that D is 2-tardy (so not Turing complete),
e jf there is a C such that P(D,C) and D is 2-tardy then
Q(D) (and D is high),
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n-Tardy Sets

Definition

D is n-tardy iff for every computable nondecreasing function
p(s) there is an e such that X! = D and

(Vx)(Vs)[if x € X['s then x & Dy (5]

Theorem

There are realizable € definable properties Q, (D) such that
Qn (D) implies that D is properly n-tardy (so not Turing
complete).

Question
If D is not automorphic to a complete set must D satisfy
some Qy?
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Degrees of n-Tardy sets

Splits of 2-tardys are 3-tardy but

Theorem
There is a 3-tardy that is not computable in any 2-tardy.

Question

Is there an n + 1-tardy set that is not computed by any
n-tardy set? Is there a very tardy sets which is not computed
by any n-tardy?
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Main Open Questions, Localized

Question (D-Maximal Completeness)

Does the orbit of every D-maximal set contain a complete
set?

Question
Is the above question an arithmetical question?

Question
Why D-maximal?
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The Maximal Sets

Definition
M is maximal if for all W either W c* M or M U W =* .

Theorem (Friedberg)
Maximal sets exist.

Corollary

Let M be maximal. If M U W =* w then there is a computable
set Ry such that Ry =* M and W U Ry = w. So

W =Ry U (W N Ry).



Examples
0@0000

Building Automorphisms

Theorem (Soare)
If A and A are both noncomputable then there is an
isomorphism, ®, between the c.e. subsets of A, €(A), to the

c.e. subsets ofﬁ sending computable subsets of A to
computable subsets of A and dually.

False Proof.

Let p be a computable 1-1 map from A to A. Let
(W) =p(W).
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Orbits of Maximal Sets

Theorem (Soare)

The maximal sets form an orbit. This orbit includes a
complete set.

Proof.
Take M and M two maximal sets and apply Soare’s Theorem
to get ®. Define if W c* M then let Y (W) = &(W). If

MUW =* w then let ¥ (W) = ®(Ry) U P(Rw N W). O
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Frledberg Splits of Maximal Sets

Definition
S1U 82 =M is a Friedberg split of M, forall W, if W N\ M is
infinite then W \ S; is also.

Lemma (Downey, Stob)
A nontrivial split of a maximal set (a hemimaximal set) is a
Friedberg Split.

Theorem (Downey, Stob)

The Friedberg splits of the maximal sets form a definable
orbit. This orbit includes a complete set.

Proof.

Let M{ UMy, = M. If W UM =* w then W \ M is infinite.
Y(W) = (1 (Rw N M1) n®2(Rw N Mp)) U@ (Rw N W N M) U
®1(Rw n W N Mp). ]
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Herrmann Sets

Definition
A set H is Herrmann iff
e for all c.e. sets D disjoint from H there is a computable
set R such that R is disjoint from H, D C R,and R — D is
infinite.
e for all c.e. sets B there is a c.e. set D disjoint from H
such that either BC HnNnBorBUD UH = w.

Theorem (Cholak, Downey, and Herrmann)

The Herrmann sets form a definable Ag orbit containing a
complete set different from the maximal and hemimaximal
sets.

There is a Ag list of disjoint computable sets R; such that for
all B disjoint from H there is an n with B < | |;<,, R;.
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Sets with A-Special Lists

Definition

A list of computably enumerable sets, F = {F; : i € w}, is an
A-special list iff ‘F is a list of pairwise disjoint noncomputable
sets, Fp = A, and, for all e, there is an i such that

Wees [ i<ciFrorWeu i F| = w.

Theorem (Cholak and Harrington)

The sets with A-special lists form a definable A(S) (but not Ag)
orbit different from the maximal, hemimaximal, and
Herrmann sets.

Question
Does this orbit contain a complete set?
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D-Maximal Sets

Definition (The sets disjoint from A)

DA) ={B:IWBcAuWand Wn A =* &)} under
inclusion. Let €p(4) be € modulo D(A).

Definition

A is D-hhsimple iff €p4) is a =3 Boolean algebra. A is
D-maximal iff €pa) is the trivial Boolean algebra iff for all
c.e. sets B there is a c.e. set D disjoint from A such that
either BC AuDorBUDUA = w.

Lemma
Maximal sets, hemimaximal sets, Herrmann sets and sets
with A-special lists are D-maximal.
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D-hhsimple and Simple

Theorem (Maass 84)
If A is D-hhsimple and simAple (i.e., hhsimple) if
€D(A) EA(3) %D(ﬁ) then A=~ A.

Theorem (Cholak, Harrington)
If A is hhsimple then A~ A iff €p(a) =0 Epd)-

All such orbits contain complete sets.
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Complexity Restrictions

Theorem (Cholak, Harrington)
If A is D-hhsimple and A and A are in the same orbit then
€D(A) =AQ €pd)-

Does not provide an answer to the following:

Question (D-maximal Completeness)
Which D-maximal sets are automorphic to complete sets?

Question
Is the above question an arithmetical question?

Question
Can we classify the D-maximal sets?
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The Classification D-maximal sets

Definition

For a D-maximal set, a list of c.e. sets {X;}icq generates
D(A) iff for all D if D is disjoint from A then thereisan
such that D c* {J;<, Xj. (This list need not be computable.)

Lemma

o {D} generates D(A) iff A is maximal.
e For any computable set R, {R} generates D(A) iff A is
maximal on R.

e For any noncomputable c.e. set W, {W?} generates D(A)
iff A is hemimaximal.

e In all other cases, the list of generators is infinite.
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Disjoint Computable Generators

Lemma
e If infinitely many computable sets are used to (partially)
generate D(A) we can assume that (partial) list is
pairwise disjoint.
e If an infinite list of computable sets generates D(A) then
A is Herrmann.
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Disjoint Noncomputable Generators

Lemma

Assume an infinite pairwise disjoint list generates D(A).
Then either

e A is Herrmann
e D(A) is generated by a infinite pairwise disjoint list

where exactly one of the sets is noncomputable and A is
hemi-Herrmann.

e A has a A-special list.
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Almost Disjoint Computable Generators

Lemma

Assume W and {R;}ico generates D(A) where {Ri}icw is a
list of pairwise disjoint computable sets and W is
noncomputable set such that for all i, W nR; #* &. Then A
is a nontrivial split of hhsimple set H and €p ) must be
infinite.

Theorem (Herrmann and Kummer)

For every possible infinite Zg Boolean Algebra B there is a
hhsimple set H and a split A of H such that A is D-maximal
and %D(H) ~ B.

Theorem
The class of D-maximal splits of hhsimple sets breaks up into
infinitely many orbits.

Question
Do these orbits contain complete sets?
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Nested Noncomputable Generators

Definition
H is r-maximal iff no computable set splits H into two
infinite sets. H is atomless iff H has no maximal superset.

Theorem

e There are D-maximal splits of atomless v-maximal sets.
e The class of D-maximal splits of atomless v-maximal sets
breaks into infinitely many orbits. (Uses a similar result

about atomless v -maximal sets by Cholak and Nies.)
e A is a D-maximal split of atomless v-maximal set iff

there is a list of nested noncomputable generators

{Xiticw for D(A), i.e. for all i then X; C X;i1.

Question
Do these orbits contain complete sets?
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Anti-Friedberg Splits

Definition
Ao is an anti-Friedberg split of A iff there is an A; such that

Ao U A; = A and, for all W, either W — Ay is c.e. or
WuA=*w.

Lemma

All D-maximal splits of maximal, hhsimple, Herrmann and
atomless v-maximal sets are anti-Friedberg. All
anti-Friedberg splits are D-maximal.

Question
Do the anti-Friedberg splits of a set (orbit) form an orbit?
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Disjoint Noncomputable Generators
and
Disjoint Computable Generators

Theorem

e There are D-maximal sets that are generated by
pairwise disjoint noncomputable sets {W;}ic, and
pairwise disjoint computable sets {R;}ic Such that for
alli=j,WinR;+* Q.

e The class of such D-maximal sets breaks into infinitely
many orbits.

Question
Do these orbits contain complete sets?
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Nested Noncomputable Generators
and
Disjoint Computable Generators

Theorem

e There are D-maximal sets which are generated by
noncomputable sets {Wi}lic. and pairwise disjoint
computable sets {R;}ic such that for all i = j,
WinR;+* @ and Wi N R; C* Wiy;.

e The class of such D-maximal sets breaks into infinitely
many orbits.

Theorem (Classification)
That is all the possible generating sets of D-maximal sets.
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Main Open Questions, Localized

Question (D-Maximal Completeness)

Does the orbit of every D-maximal set contain an complete
set?

Question
Is the above question an arithmetical question?
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