n⁰ equivalence structures and their isomorphisms

Valentina Harizanov (with Doug Cenzer and Jeff Remmel) George Washington University

> harizanv@gwu.edu http://home.gwu.edu/~harizanv/

- An equivalence structure $\mathcal{A} = (\omega, E^{\mathcal{A}})$ is computable if its relation $E^{\mathcal{A}}$ is computable.
- $\blacklozenge\, \mathcal{A} = (\omega, E^\mathcal{A})$ is c.e. (or $\mathsf{\Sigma}^0_1$) if $E^\mathcal{A}$ is a c.e. set. ${\mathcal A}$ is *co-c.e.* (or $\sqcap^0_1)$ if $E^{\mathcal A}$ is a co-c.e. set.
- Equivalence class of $a: [a]^{\mathcal{A}} = \{x \in A : xE^{\mathcal{A}}a\}$ Character:

 $\chi(\mathcal{A}) = \{\langle k, n \rangle : n, k > 0 \text{ and } \mathcal{A} \text{ has } \geq n \text{ equivalence classes of size } k\}$ Bounded character: k is bounded

 \bullet For any c.e. equivalence structure \mathcal{A} :

\n- (a)
$$
\{\langle k, a \rangle : card([a]^\mathcal{A}) \geq k\}
$$
 is a c.e. set;
\n- (b) $Inf^\mathcal{A} = \{a : [a]^\mathcal{A} \text{ is infinite}\}$ is a Π_2^0 set;
\n- (c) $\chi(\mathcal{A})$ is a Σ_2^0 set.
\n

 \bullet $K\subseteq \langle(\omega-\{0\})\times (\omega-\{0\})\rangle$ is a *character* if for all $n > 0$ and k:

$$
\langle k, n+1 \rangle \in K \Rightarrow \langle k, n \rangle \in K
$$

 (Calvert-Cenzer-Harizanov-Morozov 2006) For any ${\bf \Sigma}_2^0$ character K , there exists a computable equivalence structure A with infinitely many infinite equivalence classes and character K .

(Corollary)

If A is a c.e. equivalence structure with infinitely many infinite equivalence classes, then $\mathcal A$ is isomorphic to a computable equivalence structure.

- (Cenzer-Harizanov-Remmel 2011) For any Σ^0_2 character K and any finite $r,$ there is a c.e. equivalence structure with character K and with exactly r infinite equivalence classes.
- (Corollary)

There exists a c.e. equivalence structure (with finitely many infinite equivalence classes), which is not isomorphic to any computable equivalence structure.

- \bullet A function $f:\omega^2\to\omega$ is a (Khisamiev's) *s-function* if for every i and s : $f(i, s) \le f(i, s + 1)$, and the limit $m_i = lim_s f(i, s)$ exists.
- f is called an s_1 -function if, in addition: $m_0 < m_1 < \cdots < m_i < m_{i+1} < \cdots$

 $\{m_i:i\in\omega\}$ is a Δ_2^0 set.

- \bullet Let A be a computable equivalence structure with finitely many infinite equivalence classes and infinite character $\chi(\mathcal{A}).$
- \bullet There exists a computable *s*-function f with limits m_i such that:

$$
\langle k, n \rangle \in \chi(\mathcal{A}) \Leftrightarrow card(\{i : k = m_i\}) \ge n
$$

• If $\chi(\mathcal{A})$ is unbounded, then there is a computable s_1 -function f such that ${\cal A}$ contains an equivalence class of size m_i for each $i.$

- Let K be a $\mathsf{\Sigma}^0_2$ character, and $r\in\omega.$
- \bullet If f is a computable s -function with the limits m_i such that

$$
\langle k, n \rangle \in K \Leftrightarrow card(\{i : k = m_i\}) \ge n,
$$

then there is a computable equivalence structure A with $\chi(\mathcal{A}) = K$ and with exactly r infinite equivalence classes.

 \bullet If f is a computable s_1 -function such that $\langle m_i, 1 \rangle \in K$ for all i , then there is a computable equivalence structure A with $\chi({\mathcal A})=K$ and exactly r infinite equivalence classes.

 $\bullet\,$ There is an infinite ${\Delta}_2^0$ set D such that for any computable equivalence structure $\mathcal A$ with unbounded character K and no infinite equivalence classes, $\{k : \langle k, 1 \rangle \in K\}$ is not a subset of D.

Hence, for any computable s_1 -function f with $m_i = lim_s f(i, s)$ $m_0 < m_1 < \cdots$ there exists i_0 such that $m_{i_0}\notin D.$

(Corollary)

A c.e. equivalence structure with character $\{\langle k, 1\rangle : k \in D\}$ and no infinite equivalence classes is not isomorphic to any computable equivalence structure.

Let C be a *computable* structure.

- \bullet C is Δ^0_n categorical if for all computable $\mathcal{B} \cong \mathcal{C}$, there is a Δ^0_n isomorphism from $\cal C$ onto $\cal B.$
- \bullet C is *relatively* Δ_n^0 *categorical* if for all $\mathcal{B} \cong \mathcal{C}$, there is an isomorphism from C onto B , which is Δ_n^0 relative to the atomic diagram of ${\cal B}.$

(Calvert-Cenzer-Harizanov-Morozov 2006)

- A computable equivalence structure A is computably categorical iff: (1) A has finitely many finite equivalence classes, or (2) A has finitely many infinite classes, bounded character, and at most one finite $k > 0$ with infinitely many classes of size k.
- \bullet Every computable equivalence structure is Δ^0_3 categorical.
- Let $\mathcal A$ be a computable equivalence structure with infinitely many infinite equivalence classes, and with unbounded character that has a computable s_1 -function. Then $\mathcal A$ is *not* Δ^0_2 *categorical*.

 \bullet A Scott family for a countable structure C is a countable set Φ of $L_{\omega_1\omega}$ formulas, with a fixed finite tuple of parameters in C, such that:

(i) each tuple in C satisfies some $\psi \in \Phi$;

(ii) if \overline{a} , \overline{b} are tuples in C satisfying the same formula $\psi \in \Phi$, then there is an automorphism of C taking \overline{a} to b.

 (Ash-Knight-Manasse-Slaman 1989, Chisholm 1990) A computable structure $\mathcal C$ is *relatively* Δ_n^0 categorical *iff* C has a c.e. Scott family consisting of computable Σ_n formulas. (Calvert-Cenzer-Harizanov-Morozov 2006)

- Every computable *computably categorical* equivalence structure is relatively computably categorical.
- \bullet Every computable equivalence structure is *relatively* Δ^0_3 *categorical*.
- \bullet A computable equivalence structure ${\cal A}$ is *relatively* Δ_2^0 *categorical iff*: (i) A has finitely many infinite equivalence classes, or (ii) A has bounded character.

 \bullet If $\mathcal A$ is a computable equivalence structure with bounded character, then ${\cal A}$ is relatively Δ_2^0 categorical.

Let k be the maximum size of any finite equivalence class. $[a]^{\mathcal{A}}$ is infinite *iff* $[a]^{\mathcal{A}}$ contains at least $k+1$ elements $(\mathsf{\Sigma}^0_1$ condition).

 \bullet If $\mathcal A$ is a computable equivalence structure with finitely many infinite equivalence classes, then ${\cal A}$ is relatively Δ_2^0 categorical.

Choose representatives c_1, \ldots, c_l for the finitely many infinite equivalence classes.

(Goncharov 1980)

There is a rigid computable graph that is computably categorical, but not relatively computably categorical.

- (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon 2005) For every computable successor ordinal $\alpha > 1$, there is a computable structure that is Δ^0_α *categorical*, but *not relatively* Δ^0_α categorical.
- (Kach-Turetsky 2009) There is a computable Δ^0_2 categorical equivalence structure that is not *relatively* Δ^0_2 categorical.

(Cenzer-Harizanov-Remmel 2011)

- \bullet Let A be a c.e. equivalence structure, and let $\mathcal B$ be a computable structure isomorphic to $\mathcal A$ such that ${\cal B}$ is relatively Δ_2^0 categorical. Then ${\cal A}$ and ${\cal B}$ are Δ_2^0 *isomorphic*.
- (Corollary) Let A and B be isomorphic c.e. equivalence structures such that:

(i) A has finitely many infinite equivalence classes, or (ii) A has bounded character. Then ${\cal A}$ and ${\cal B}$ are Δ_2^0 *isomorphic*.

(Cenzer-Harizanov-Remmel 2011)

• Let ${\mathcal A}$ and ${\mathcal B}$ be isomorphic Π^0_1 equivalence structures such that:

(i) either A has only finitely many finite equivalence classes, or

(ii) $\mathcal A$ has finitely many infinite equivalence classes and bounded character, and there is exactly one finite k such that ${\mathcal A}$ has infinitely many equivalence classes of size k .

Then ${\cal A}$ and ${\cal B}$ are Δ_2^0 *isomorphic*.

 \bullet Proof. If ${\cal B}$ is a Π^0_1 equivalence structure, and ${\cal C}$ is an isomorphic computable structure that is computably categorical, then, since C is also relatively computably categorical, ${\cal C}$ and ${\cal B}$ are Δ_2^0 isomorphic.

• Suppose that β is a computable equivalence structure with bounded character, for which there exist $k_1 < k_2 \leq \omega$ such that $\mathcal B$ has infinitely many equivalence classes of size k_1 and infinitely many equivalence classes of size k_2 .

Then there exists a $\Pi^0_\mathcal{A}$ structure $\mathcal A$ isomorphic to $\mathcal B$ such that ${\cal A}$ is not $\Delta_2^{\bar 0}$ isomorphic to ${\cal B}.$ Moreover, $\mathcal A$ is not Δ_2^0 isomorphic to any c.e. structure.

• Proof. We first suppose that B has no other equivalence classes.

It suffices to build a Π^0_1 equivalence structure ${\mathcal A}$ such that $\{a : card([a]^\mathcal{A}) = k_2\}$ is not a Δ^0_2 set.

That is, for any Σ^0_1 structure, the set of elements that belong to an equivalence class of (finite) size k is a Δ^0_2 set. So if ${\mathcal A}$ were Δ^0_2 isomorphic to a Σ^0_1 structure, then ${\mathcal A}$ would also have this property.

• For simplicity, let A have universe $\omega \setminus \{0\}$.

Let $\phi:\omega^3\to \{0,1\}$ be a computable function such that for every Δ^0_2 set D , there is some e for which for all $n\in\omega,$ the limit $\delta_e(n) =_{def}$ lim $t\rightarrow\infty$ $\phi(t, e, n)$ exists and δ_e is the characteristic function of D.

The function ϕ exists by the Limit Lemma.

If $\delta_e(n)$ is defined for all n, we let $D_e = \{n : \delta_e(n) = 1\}.$

We will construct the equivalence relation $E=E^{\mathcal{A}}$ so that for each e , if D_e exists, then $card([2^e]^{\mathcal{A}})=k_2$ if and only if $2^e\notin D_e.$

• We construct $E^{\mathcal{A}}$ in stages.

At each stage s, we define a computable equivalence relation E_s so that $E_{s+1} \subseteq E_s$ for all s , and $E^\mathcal{A} = \bigcap_s$ s E_s .

Let $[a]_s$ denote the equivalence class of a in E_s .

At each stage s , we also define an *intended* equivalence class $I_s[2^e]$, either of size k_1 or of size k_2 .

We will ensure that for each e , there is some stage s_e such that for all $s\geq s_{e}$, we have $[2^{e}]=I_{s}[2^{e}].$ Furthermore, for all s , $[2^e]_{s+1} \subseteq [2^e]_s$, and \bigcap_s s $[2^e]_s = [2^e].$

We also define a number of *permanent* classes [a] of size k_1 at each s.

Construction

Stage 0.

We start with the equivalence classes $\{2^{e}(2k+1): k\in\omega\}$ for $e\geq 0.$ For each $e \geq 0$, let $I_0[2^e] = \{2^e, 3 \cdot 2^e, 5 \cdot 2^e, \ldots, (2k_1 - 1) \cdot 2^e\}.$

• Stage $s+1$.

At the end of stage s , assume that for each e , we have defined the intended equivalence class $I_s[2^e]$, so that $I_s[2^e]$ is an initial subset of $[2^e]_s$, with cardinality either k_1 or k_2 .

Moreover, assume that if $\phi(s,e,2^e)=1$, then $I_s[2^e]$ has cardinality $k_1,$ and if $\phi(s,e,2^e)=\mathsf{0}$, then $I_s[2^e]$ has cardinality $k_2.$

 $\bullet\,$ For each $\it e$, we say that the element 2^e *requires attention* at stage $s+1$ if $\phi(s+1,e,2^e) \neq \phi(s,e,2^e)$. We can assume this occurs for exactly one e.

Let
$$
[2^e]_s = \{2^e, a_1, a_2, \dots\}.
$$

- If 2^e requires attention at stage $s + 1$, we take the following action according to whether $I_s[2^e]$ has cardinality k_1 or $k_2.$
- Case (i): $card(I_s[2^e]) = k_2$ Let $I_{s+1}[2^e] = \{2^e, a_1, \ldots, a_{k_1-1}\},\$ let $[2^e]_{s+1} = \{2^e, a_1, \ldots, a_{k_1-1}, a_{2k_1}, a_{2k_1+1}, \ldots\}$, and create a permanent equivalence class $\{a_{k_1},a_{k_1+1},\ldots,a_{2k_1-1}\}$ of size $k_1.$
- Case (ii): $card(I_s[2^e]) = k_1$
- Assume that k_2 is finite.

Let $I_{s+1}[2^e] = \{2^e, a_1, \ldots, a_{k_2-1}\},\,$ let $[2^e]_{s+1} = \{2^e, a_1, \ldots, a_{k_2-1}, a_{k_2+k_1}, a_{k_2+k_1+1}, \ldots\}$, and create a permanent equivalence class $\{a_{k_2},a_{k_2+1},\ldots,a_{k_2+k_1-1}\}$ of size $k_1.$

• Assume $k_2 = \omega$.

Let $I_{s+1}[2^e] = [2^e]_{s+1} = [2^e]_s$.

 \bullet If 2^e does not require attention, there are two cases.

- If $k_2 = \omega$, $I_s[2^e] = [2^e]_s$ is infinite, then let $I_{s+1}[2^e] = [2^e]_{s+1} = [2^e]_s$.
- If $card([I_s[2^e]) = k_m$ is finite $(m \in \{1, 2\})$, then let $I_{s+1}[2^e] = \{2^e, a_1, \ldots, a_{k_m-1}\},$ let $[2^e]_{s+1} = \{2^e, a_1, \ldots, a_{k_m-1}, a_{k_m+k_1}, a_{k_m+k_1+1}, \ldots\}$, and create a permanent equivalence class $\{a_{k_m},a_{k_m+1},\ldots,a_{k_m+k_1-1}\}$ of size $k_1.$
- Clearly, the equivalence relation E_s is uniformly computable, and $E_{s+1} \subseteq E_s$ for every s.

Thus, $E = \bigcap$ s E_s is a $\mathsf{\Pi}^0_1$ equivalence relation.

• Every equivalence class in E has either k_1 or k_2 elements. $A=\{n:card([2^n])=k_2\}$ is not a Δ^0_2 set.

Corollary

• Suppose that β is a computable equivalence structure with bounded character, which is not computably categorical.

Then there exists a Π^0_1 structure ${\cal A}$ isomorphic to ${\cal B},$ which is not Δ_2^0 isomorphic to \mathcal{B} . Moreover, ${\cal A}$ is not Δ_2^0 isomorphic to any c.e. structure. • Suppose that β is a computable equivalence structure, which is relatively Δ^0_2 categorical and has unbounded character, hence has only finitely many infinite equivalence classes.

Then there exists a Π^0_1 structure ${\mathcal A}$ that is isomorphic to ${\mathcal B},$ but not Δ^0_2 isomorphic to ${\cal B}.$

Moreover, ${\cal A}$ is not Δ_2^0 isomorphic to any c.e. structure.

• Proof. There is a computable s_1 -function f such that for each i , there exists finite $lim_s f(i,s)=m_i$ and ${\cal B}$ has an equivalence class of size $m_i.$

 $M=\{m_i:i\in\omega\}$ is a Δ_2^0 set.

Thus, there exists a computable equivalence structure which consists of exactly one equivalence class of size m_i for each $i.$

- First, assume that B consists of exactly one equivalence class of size m_i for each i .
- It suffices to build an isomorphic Π^0_1 equivalence structure ${\mathcal A}$ such that $\{a : card([a]^{\mathcal{A}}) = m_{2i} \text{ for some } i\}$ is not a Δ_2^0 set.
- \bullet That is, we observe that the functions f_E and f_O , defined by $f_E(i, s) = f(2i, s)$ and $f_O(i, s) = f(2i + 1, s)$ are also s_1 -functions.
- \bullet Hence the sets $M_{\mathbf{0}}=\{m_{2i}:i\in\omega\}$ and $M_{\mathbf{1}}=\{m_{2i+1}:i\in\omega\}$ are both Δ_2^0 .
- There exist computable structures B_0 and B_1 , which consist of precisely one class of size m_{2i} for \mathcal{B}_0 and of size m_{2i+1} for $\mathcal{B}_1.$
- In the structure $\mathcal{B}_0 \oplus \mathcal{B}_1$, the set $\{x : card([x]) \in M_0\}$ is computable.
- \bullet Since we have assumed that ${\cal B}$ is relatively Δ_2^0 categorical, it follows that for any ${\sf \Sigma}_1^0$ equivalence structure with character $\{(m,1): m\in M_0\!\cup\!M_1\}$, the set $\{x: card([x]) \in M_0\}$ is Δ_2^0 .

• Suppose that β is a computable equivalence structure, which is relatively Δ^0_2 categorical, but not computably categorical.

Then there exists a Π^0_1 structure ${\cal A}$ isomorphic to ${\cal B},$ which is not Δ_2^0 isomorphic to \mathcal{B} . Moreover, ${\cal A}$ is not Δ_2^0 isomorphic to any c.e. structure.

• Previous theorem does not cover all computable Δ^0_2 categorical equivalence structures.

Kach and Turetsky showed that there exists a computable Δ^0_2 categorical equivalence structure ${\cal B}$, which has infinitely many infinite equivalence classes and unbounded character, but has no computable s_1 -function, and has only finitely many equivalence classes of size k for any finite k . \bullet Let β be a computable equivalence structure with infinitely many infinite equivalence classes and with unbounded character such that for each finite k , there are only finitely many equivalence classes of size k .

Then there is a Π^0_1 structure ${\cal A}$, which is isomorphic to ${\cal B}$, such that $Inf^{\cal A}$ is Π^0_2 complete.

Furthermore, if \mathcal{B} is Δ_2^0 categorical, then ${\cal A}$ is not Δ_2^0 isomorphic to any computable structure.

• Suppose that β is a computable equivalence structure, which is not computably categorical.

Then there is a Π^0_1 structure ${\cal A}$ that is isomorphic to ${\cal B}$ such that ${\cal A}$ is not Δ_2^0 isomorphic to ${\cal B}.$