Π⁰₁ equivalence structures and their isomorphisms

Valentina Harizanov (with Doug Cenzer and Jeff Remmel) George Washington University

> harizanv@gwu.edu http://home.gwu.edu/~harizanv/

- An equivalence structure $\mathcal{A} = (\omega, E^{\mathcal{A}})$ is computable if its relation $E^{\mathcal{A}}$ is computable.
- $\mathcal{A} = (\omega, E^{\mathcal{A}})$ is *c.e.* (or Σ_1^0) if $E^{\mathcal{A}}$ is a c.e. set. \mathcal{A} is *co-c.e.* (or Π_1^0) if $E^{\mathcal{A}}$ is a co-c.e. set.
- Equivalence class of a: [a]^A = {x ∈ A : xE^Aa}
 Character:

 $\chi(\mathcal{A}) = \{ \langle k, n \rangle : n, k > 0 \text{ and } \mathcal{A} \text{ has } \geq n \text{ equivalence classes of size } k \}$ Bounded character: k is bounded • For any c.e. equivalence structure \mathcal{A} :

(a)
$$\{\langle k, a \rangle : card([a]^{\mathcal{A}}) \ge k\}$$
 is a c.e. set;
(b) $Inf^{\mathcal{A}} = \{a : [a]^{\mathcal{A}} \text{ is infinite}\}$ is a Π_2^0 set;
(c) $\chi(\mathcal{A})$ is a Σ_2^0 set.

K ⊆ ⟨(ω − {0}) × (ω − {0})⟩ is a *character* if for all n > 0 and k:

$$\langle k, n+1 \rangle \in K \Rightarrow \langle k, n \rangle \in K$$

(Calvert-Cenzer-Harizanov-Morozov 2006)
 For any Σ⁰₂ character K, there exists a computable equivalence structure A with infinitely many infinite equivalence classes and character K.

• (Corollary)

If \mathcal{A} is a c.e. equivalence structure with infinitely many infinite equivalence classes, then \mathcal{A} is isomorphic to a computable equivalence structure.

- (Cenzer-Harizanov-Remmel 2011)
 For any Σ⁰₂ character K and any finite r,
 there is a c.e. equivalence structure with character K and
 with exactly r infinite equivalence classes.
- (Corollary)

There exists a c.e. equivalence structure (with finitely many infinite equivalence classes), which is not isomorphic to any computable equivalence structure.

- A function f : ω² → ω is a (Khisamiev's) s-function if for every i and s: f(i,s) ≤ f(i,s+1), and the limit m_i = lim_sf(i,s) exists.
- f is called an s_1 -function if, in addition: $m_0 < m_1 < \cdots < m_i < m_{i+1} < \cdots$

 $\{m_i: i \in \omega\}$ is a Δ_2^0 set.

- Let \mathcal{A} be a computable equivalence structure with finitely many infinite equivalence classes and infinite character $\chi(\mathcal{A})$.
- There exists a computable s-function f with limits m_i such that:

$$\langle k, n \rangle \in \chi(\mathcal{A}) \Leftrightarrow card(\{i : k = m_i\}) \geq n$$

 If χ(A) is unbounded, then there is a computable s₁-function f such that A contains an equivalence class of size m_i for each i.

- Let K be a Σ_2^0 character, and $r \in \omega$.
- If f is a computable s-function with the limits m_i such that

$$\langle k, n \rangle \in K \Leftrightarrow card(\{i : k = m_i\}) \geq n,$$

then there is a computable equivalence structure \mathcal{A} with $\chi(\mathcal{A}) = K$ and with exactly r infinite equivalence classes.

 If f is a computable s₁-function such that ⟨m_i, 1⟩ ∈ K for all i, then there is a computable equivalence structure A with χ(A) = K and exactly r infinite equivalence classes. There is an infinite Δ₂⁰ set D such that for any computable equivalence structure A with unbounded character K and no infinite equivalence classes, {k: ⟨k, 1⟩ ∈ K} is not a subset of D.

Hence, for any computable s_1 -function f with $m_i = lim_s f(i, s)$ $m_0 < m_1 < \cdots$, there exists i_0 such that $m_{i_0} \notin D$.

• (Corollary)

A c.e. equivalence structure with character $\{\langle k, \mathbf{1} \rangle : k \in D\}$ and no infinite equivalence classes is not isomorphic to any computable equivalence structure. Let C be a *computable* structure.

- C is Δ_n^0 categorical if for all computable $\mathcal{B} \cong C$, there is a Δ_n^0 isomorphism from C onto \mathcal{B} .
- C is relatively Δ_n^0 categorical if for all $\mathcal{B} \cong C$, there is an isomorphism from C onto \mathcal{B} , which is Δ_n^0 relative to the atomic diagram of \mathcal{B} .

(Calvert-Cenzer-Harizanov-Morozov 2006)

- A computable equivalence structure A is computably categorical iff:
 (1) A has finitely many finite equivalence classes, or
 (2) A has finitely many infinite classes, bounded character, and at most one finite k > 0 with infinitely many classes of size k.
- Every computable equivalence structure is Δ_3^0 categorical.
- Let A be a computable equivalence structure with infinitely many infinite equivalence classes, and with unbounded character that has a computable s₁-function. Then A is not Δ⁰₂ categorical.

 A Scott family for a countable structure C is a countable set Φ of L_{ω1ω} formulas, with a fixed finite tuple of parameters in C, such that:

(i) each tuple in C satisfies some $\psi \in \Phi$;

(ii) if \overline{a} , \overline{b} are tuples in C satisfying the same formula $\psi \in \Phi$, then there is an automorphism of C taking \overline{a} to \overline{b} .

(Ash-Knight-Manasse-Slaman 1989, Chisholm 1990)
 A computable structure C is *relatively* Δ⁰_n categorical *iff* C has a c.e. Scott family consisting of computable Σ_n formulas.

(Calvert-Cenzer-Harizanov-Morozov 2006)

- Every computable *computably categorical* equivalence structure is relatively computably categorical.
- Every computable equivalence structure is *relatively* Δ_3^0 *categorical*.
- A computable equivalence structure A is relatively Δ⁰₂ categorical iff:
 (i) A has finitely many infinite equivalence classes, or
 (ii) A has bounded character.

• If \mathcal{A} is a computable equivalence structure with bounded character, then \mathcal{A} is relatively Δ_2^0 categorical.

Let k be the maximum size of any finite equivalence class. $[a]^{\mathcal{A}}$ is infinite *iff* $[a]^{\mathcal{A}}$ contains at least k + 1 elements (Σ_1^0 condition).

 If A is a computable equivalence structure with finitely many infinite equivalence classes, then A is relatively Δ⁰₂ categorical.

Choose representatives c_1, \ldots, c_l for the finitely many infinite equivalence classes.

• (Goncharov 1980)

There is a rigid computable graph that is *computably categorical*, but *not relatively* computably categorical.

- (Goncharov-Harizanov-Knight-McCoy-Miller-Solomon 2005) For every computable successor ordinal $\alpha > 1$, there is a computable structure that is Δ^0_{α} categorical, but not relatively Δ^0_{α} categorical.
- (Kach-Turetsky 2009) There is a computable Δ_2^0 categorical equivalence structure that is not relatively Δ_2^0 categorical.

(Cenzer-Harizanov-Remmel 2011)

- Let A be a c.e. equivalence structure, and let B be a computable structure isomorphic to A such that B is relatively Δ⁰₂ categorical. Then A and B are Δ⁰₂ isomorphic.
- (Corollary) Let \mathcal{A} and \mathcal{B} be isomorphic c.e. equivalence structures such that:

(i) \mathcal{A} has finitely many infinite equivalence classes, or (ii) \mathcal{A} has bounded character. Then \mathcal{A} and \mathcal{B} are Δ_2^0 isomorphic. (Cenzer-Harizanov-Remmel 2011)

• Let \mathcal{A} and \mathcal{B} be isomorphic Π_1^0 equivalence structures such that:

(i) either \mathcal{A} has only finitely many finite equivalence classes, or

(ii) \mathcal{A} has finitely many infinite equivalence classes and bounded character, and there is exactly one finite k such that \mathcal{A} has infinitely many equivalence classes of size k.

Then \mathcal{A} and \mathcal{B} are Δ_2^0 isomorphic.

• Proof. If \mathcal{B} is a Π_1^0 equivalence structure, and \mathcal{C} is an isomorphic computable structure that is computably categorical, then, since \mathcal{C} is also relatively computably categorical, \mathcal{C} and \mathcal{B} are Δ_2^0 isomorphic.

 Suppose that B is a computable equivalence structure with bounded character, for which there exist k₁ < k₂ ≤ ω such that B has infinitely many equivalence classes of size k₁ and infinitely many equivalence classes of size k₂.

Then there exists a Π_1^0 structure \mathcal{A} isomorphic to \mathcal{B} such that \mathcal{A} is not Δ_2^0 isomorphic to \mathcal{B} . Moreover, \mathcal{A} is not Δ_2^0 isomorphic to any c.e. structure.

• Proof. We first suppose that $\mathcal B$ has no other equivalence classes.

It suffices to build a Π_1^0 equivalence structure \mathcal{A} such that $\{a : card([a]^{\mathcal{A}}) = k_2\}$ is not a Δ_2^0 set.

That is, for any Σ_1^0 structure, the set of elements that belong to an equivalence class of (finite) size k is a Δ_2^0 set. So if \mathcal{A} were Δ_2^0 isomorphic to a Σ_1^0 structure, then \mathcal{A} would also have this property.

• For simplicity, let \mathcal{A} have universe $\omega \setminus \{0\}$.

Let $\phi: \omega^3 \to \{0, 1\}$ be a computable function such that for every Δ_2^0 set D, there is some e for which for all $n \in \omega$, the limit $\delta_e(n) =_{def} \lim_{t \to \infty} \phi(t, e, n)$ exists and δ_e is the characteristic function of D.

The function ϕ exists by the Limit Lemma.

If $\delta_e(n)$ is defined for all n, we let $D_e = \{n : \delta_e(n) = 1\}$.

We will construct the equivalence relation $E = E^{\mathcal{A}}$ so that for each e, if D_e exists, then $card([2^e]^{\mathcal{A}}) = k_2$ if and only if $2^e \notin D_e$. • We construct $E^{\mathcal{A}}$ in stages.

At each stage s, we define a computable equivalence relation E_s so that $E_{s+1} \subseteq E_s$ for all s, and $E^{\mathcal{A}} = \bigcap_s E_s$.

Let $[a]_s$ denote the equivalence class of a in E_s .

At each stage s, we also define an *intended* equivalence class $I_s[2^e]$, either of size k_1 or of size k_2 .

We will ensure that for each e, there is some stage s_e such that for all $s \ge s_e$, we have $[2^e] = I_s[2^e]$. Furthermore, for all s, $[2^e]_{s+1} \subseteq [2^e]_s$, and $\bigcap_s [2^e]_s = [2^e]$.

We also define a number of *permanent* classes [a] of size k_1 at each s.

Construction

• Stage 0.

We start with the equivalence classes $\{2^e(2k+1): k \in \omega\}$ for $e \ge 0$. For each $e \ge 0$, let $I_0[2^e] = \{2^e, 3 \cdot 2^e, 5 \cdot 2^e, \dots, (2k_1 - 1) \cdot 2^e\}$.

• Stage s + 1.

At the end of stage s, assume that for each e, we have defined the intended equivalence class $I_s[2^e]$, so that $I_s[2^e]$ is an initial subset of $[2^e]_s$, with cardinality either k_1 or k_2 .

Moreover, assume that if $\phi(s, e, 2^e) = 1$, then $I_s[2^e]$ has cardinality k_1 , and if $\phi(s, e, 2^e) = 0$, then $I_s[2^e]$ has cardinality k_2 .

For each e, we say that the element 2^e requires attention at stage s + 1 if φ(s + 1, e, 2^e) ≠ φ(s, e, 2^e). We can assume this occurs for exactly one e.

Let
$$[2^e]_s = \{2^e, a_1, a_2, \dots\}.$$

- If 2^e requires attention at stage s + 1, we take the following action according to whether $I_s[2^e]$ has cardinality k_1 or k_2 .
- Case (i): $card(I_s[2^e]) = k_2$ Let $I_{s+1}[2^e] = \{2^e, a_1, \dots, a_{k_1-1}\},\$ let $[2^e]_{s+1} = \{2^e, a_1, \dots, a_{k_1-1}, a_{2k_1}, a_{2k_1+1}, \dots\},\$ and create a permanent equivalence class $\{a_{k_1}, a_{k_1+1}, \dots, a_{2k_1-1}\}$ of size k_1 .

- Case (ii): $card(I_s[2^e]) = k_1$
- Assume that k_2 is finite.

Let $I_{s+1}[2^e] = \{2^e, a_1, \dots, a_{k_2-1}\}$, let $[2^e]_{s+1} = \{2^e, a_1, \dots, a_{k_2-1}, a_{k_2+k_1}, a_{k_2+k_1+1}, \dots\}$, and create a permanent equivalence class $\{a_{k_2}, a_{k_2+1}, \dots, a_{k_2+k_1-1}\}$ of size k_1 .

• Assume $k_2 = \omega$.

Let $I_{s+1}[2^e] = [2^e]_{s+1} = [2^e]_s$.

• If 2^e does not require attention, there are two cases.

- If $k_2 = \omega$, $I_s[2^e] = [2^e]_s$ is infinite, then let $I_{s+1}[2^e] = [2^e]_{s+1} = [2^e]_s$.
- If $card([I_s[2^e]) = k_m$ is finite $(m \in \{1, 2\})$, then let $I_{s+1}[2^e] = \{2^e, a_1, \dots, a_{k_m-1}\}$, let $[2^e]_{s+1} = \{2^e, a_1, \dots, a_{k_m-1}, a_{k_m+k_1}, a_{k_m+k_1+1}, \dots\}$, and create a permanent equivalence class $\{a_{k_m}, a_{k_m+1}, \dots, a_{k_m+k_1-1}\}$ of size k_1 .
- Clearly, the equivalence relation E_s is uniformly computable, and E_{s+1} ⊆ E_s for every s.

Thus, $E = \bigcap_{s} E_s$ is a Π_1^0 equivalence relation.

• Every equivalence class in E has either k_1 or k_2 elements. $A = \{n : card([2^n]) = k_2\}$ is not a Δ_2^0 set.

Corollary

• Suppose that \mathcal{B} is a computable equivalence structure with bounded character, which is not computably categorical.

Then there exists a Π_1^0 structure \mathcal{A} isomorphic to \mathcal{B} , which is not Δ_2^0 isomorphic to \mathcal{B} . Moreover, \mathcal{A} is not Δ_2^0 isomorphic to any c.e. structure. • Suppose that \mathcal{B} is a computable equivalence structure, which is relatively Δ_2^0 categorical and has unbounded character, hence has only finitely many infinite equivalence classes.

Then there exists a Π_1^0 structure \mathcal{A} that is isomorphic to \mathcal{B} , but not Δ_2^0 isomorphic to \mathcal{B} .

Moreover, \mathcal{A} is not Δ_2^0 isomorphic to any c.e. structure.

• Proof. There is a computable s_1 -function f such that for each i, there exists finite $lim_s f(i, s) = m_i$ and \mathcal{B} has an equivalence class of size m_i .

 $M = \{m_i : i \in \omega\}$ is a Δ_2^0 set.

Thus, there exists a computable equivalence structure which consists of exactly one equivalence class of size m_i for each i.

- First, assume that \mathcal{B} consists of exactly one equivalence class of size m_i for each i.
- It suffices to build an isomorphic Π_1^0 equivalence structure \mathcal{A} such that $\{a : card([a]^{\mathcal{A}}) = m_{2i} \text{ for some } i\}$ is not a Δ_2^0 set.
- That is, we observe that the functions f_E and f_O , defined by $f_E(i,s) = f(2i,s)$ and $f_O(i,s) = f(2i+1,s)$ are also s_1 -functions.
- Hence the sets $M_0 = \{m_{2i} : i \in \omega\}$ and $M_1 = \{m_{2i+1} : i \in \omega\}$ are both Δ_2^0 .
- There exist computable structures \mathcal{B}_0 and \mathcal{B}_1 , which consist of precisely one class of size m_{2i} for \mathcal{B}_0 and of size m_{2i+1} for \mathcal{B}_1 .

- In the structure $\mathcal{B}_0 \oplus \mathcal{B}_1$, the set $\{x : card([x]) \in M_0\}$ is computable.
- Since we have assumed that B is relatively Δ₂⁰ categorical, it follows that for any Σ₁⁰ equivalence structure with character {(m, 1) : m ∈ M₀∪M₁}, the set {x : card([x]) ∈ M₀} is Δ₂⁰.

• Suppose that \mathcal{B} is a computable equivalence structure, which is relatively Δ_2^0 categorical, but not computably categorical.

Then there exists a Π_1^0 structure \mathcal{A} isomorphic to \mathcal{B} , which is not Δ_2^0 isomorphic to \mathcal{B} . Moreover, \mathcal{A} is not Δ_2^0 isomorphic to any c.e. structure.

• Previous theorem does not cover all computable Δ_2^0 categorical equivalence structures.

Kach and Turetsky showed that there exists a computable Δ_2^0 categorical equivalence structure \mathcal{B} , which has infinitely many infinite equivalence classes and unbounded character, but has no computable s_1 -function, and has only finitely many equivalence classes of size k for any finite k. Let B be a computable equivalence structure with infinitely many infinite equivalence classes and with unbounded character such that for each finite k, there are only finitely many equivalence classes of size k.

Then there is a Π_1^0 structure \mathcal{A} , which is isomorphic to \mathcal{B} , such that $Inf^{\mathcal{A}}$ is Π_2^0 complete.

Furthermore, if \mathcal{B} is Δ_2^0 categorical, then \mathcal{A} is not Δ_2^0 isomorphic to any computable structure.

• Suppose that \mathcal{B} is a computable equivalence structure, which is not computably categorical.

Then there is a Π_1^0 structure \mathcal{A} that is isomorphic to \mathcal{B} such that \mathcal{A} is not Δ_2^0 isomorphic to \mathcal{B} .