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A Fixed Question...

Question
Is there an element x such that x 6= x + x and x = x + x + x?

Is there a cardinal x such that x 6= x + x and x = x + x + x?

Is there a linear order x such that x 6∼= x + x and x ∼= x + x + x?

Is there a Boolean algebra x such that x 6∼= x ⊕ x and
x ∼= x ⊕ x ⊕ x?

Is there a group x such that x 6∼= x × x and x ∼= x × x × x?
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Tarski’s Cube Problem...

Remark
The last (i.e., for Boolean algebras) is known as Tarski’s Cube
Problem. It remained open for decades, with Ketonen giving a positive
answer in 1978.

Indeed, Ketonen showed any commutative semigroup embeds into
BA⊕ℵ0

:= (BAℵ0 ;⊕), the commutative monoid of countable Boolean
algebras under direct sum. Consequently, the Σ1-theory of BA⊕ℵ0

is
decidable.

Ketonen asked whether the first-order theory of BA⊕ℵ0
is decidable.

Asher M. Kach (U of C) Theories of Classes of Structures 6 February 2012 4 / 21



Tarski’s Cube Problem...

Remark
The last (i.e., for Boolean algebras) is known as Tarski’s Cube
Problem. It remained open for decades, with Ketonen giving a positive
answer in 1978.

Indeed, Ketonen showed any commutative semigroup embeds into
BA⊕ℵ0

:= (BAℵ0 ;⊕), the commutative monoid of countable Boolean
algebras under direct sum. Consequently, the Σ1-theory of BA⊕ℵ0

is
decidable.

Ketonen asked whether the first-order theory of BA⊕ℵ0
is decidable.

Asher M. Kach (U of C) Theories of Classes of Structures 6 February 2012 4 / 21



The General Question...

Question
Let S be a set of isomorphism types of structures. Let S be the
structure with universe S with (natural) relations and functions. How
complicated is the first-order theory of S?

How complicated is the first-order theory of CARD+
κ ?

How complicated is the first-order theory of LO+
κ ?

How complicated is the first-order theory of BA⊕κ ?

How complicated is the first-order theory of GR×κ ?

Do any of these questions depend on κ (provided κ ≥ ℵ0)?
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Answers for CARD+
κ ...

Theorem (Feferman and Vaught)
[ZFC] The first-order theory of CARD+

κ is decidable. Moreover, it
depends only on the remainder of dividing α by ωω +ωω, where κ = ℵα.

Proof.
For decidability, recursively transform any sentence ϕ into a
sentence ψϕ such that

CARD+
κ |= ϕ if and only if CARD+

κ |= ψϕ

and any (in)equality of ψϕ is explicitly of finite cardinals or of infinite
cardinals. It then suffices to show that (N; +) and (α + 1; max) are
decidable.

For the characterization, exploit that ℵδ+ωk ·nk+···+ω·n1+n0
is a definable

singleton of CARDκ (provided it exists) using ℵδ as a parameter.
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More Questions for CARD+
κ ...

Question
Is there a model of ZF with a set C of cardinals such that CARD+

C is
not decidable? At the very least, require C to be nice, for example
downward closed and closed under addition, if not an initial segment.

Remark
An obvious method would be to construct a model of ZF having a
maximal antichain of cardinals of size n ∈ N if and only if n is in some
predescribed set T ⊆ N.

Unfortunately, my understanding is that set theorists do not know if this
possible.
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Answers for LO+
κ ...

Theorem
The first-order theory of LO+

κ , for κ ≥ ℵ0, computes true second-order
arithmetic. Moreover, the structure LO+

ℵ0
is bi-interpretable with

second-order arithmetic.

Proof.
Repeatedly exploit the relation u E v that holds exactly if

(∃w1)(∃w2) [v = w1 + u + w2] .

Using it, establish the definability of various order types: ω, ζ, ζ2, and
so on.
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Answers for LO+
κ ...

Proof.
Encode the integer n ∈ N by the order type n. Then the set of natural
numbers is a definable subset of LOκ, namely the set of all x with
x C ω.

The less than relation ≤ is definable as m ≤ n if and only if m E n.

Addition is definable as m + n = p if and only if m + n = p.

Code an `-tuple n = (n1, . . . ,n`) ∈ N` by the order type

t`(n) := ζ2 + n1 + ζ + · · ·+ n` + ζ + ζ2.

Any order type x ∈ LOκ codes a set of `-tuples, namely the set of all
n ∈ N` such that t`(n) E x . Conversely, if S ⊆ N`, then the order type∑

n∈S t`(n) codes S.
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Answers for LO+
κ ...

Corollary
The structure LO+

ℵ0
is rigid.

Let K ⊂ LOk
ℵ0

be a definable subset in second-order arithmetic.
Then K is definable in LO+

ℵ0
.

Remark
The last implies the definability of some subsets that might not seem
otherwise definable: the scattered order types, the set of triples
(x , y , z) of order types such that x · y = z, the set of order types with
condensation rank α, and so on.
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Answers for LO+
c ...

Theorem
The first-order theory of LO+

c is 1-equivalent to the ωth jump of
Kleene’s O.

Proof.
In order to show Th(LO+

c ) ≤1 O(ω), note that O suffices to determine if
two computable order types are isomorphic. Thus, Kleene’s O suffices
to compute the universe of LO+

c together with the additive operation.
Its theory is then computable from O(ω).

In order to show O(ω) ≤ Th(LO+
c ), note that the parameter that codes

multiplication [as before] is (can be taken to be) computable. Alter the
earlier encoding to code pairs (L,a) ∈ LOc × N. Define a predicate
for O by exploiting that ωα is an infinite, computable, (right) additively
indecomposable linear order whenever α is a nonzero computable
ordinal.
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Answers for BA⊕ℵ0
...

Theorem
The first-order theory of BA⊕ℵ0

computes true second-order arithmetic.

Proof.
Encode an integer n ∈ N by the interval algebra of ωn · (1 + η).

Code an `-tuple n = (n1, . . . ,n`) ∈ N` by

t`(n) := IntAlg

 ∑
i∈1+η

(ωn1 · (1 + η) + · · ·+ ωn` · (1 + η))

 .

Any Boolean algebra x ∈ BAκ codes a set of `-tuples, namely the set
of all n ∈ N` such that t`(n) is a relative algebra of x . Conversely, if
S ⊆ N`, then the interval algebra of

⊕
n∈S t`(n) codes S.
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More Questions About BA⊕ℵ0
...

Conjecture
The first-order theory of BA⊕κ , for κ > ℵ0, computes true second-order
arithmetic.

Remark
The first-order theories of BA⊕ℵ0

and BA⊕κ differ for κ > ℵ0: The former
has exactly two [nontrivial] minimal elements, namely the atom and the
atomless algebra; the latter has more.

Our proof is not known to work for κ > ℵ0 because there are “more”
elements whose set of relative algebras is linearly ordered by E.

Question
Is the structure BA⊕ℵ0

bi-interpretable with second-order arithmetic? In
particular, is it under the previous encoding?
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Answers for GR×,≤κ ...

Theorem
The first-order theory of GR×,≤κ , for κ ≥ ℵ0, computes true
second-order arithmetic.

Proof.
Encode the integer n ∈ N by the group Zn. Then less than is definable
as m ≤ n if and only if Zm ≤ Zn. Addition is definable as m + n = p if
and only if Zm × Zn = Zp.

Encode a tuple n = (n1, . . . ,n`) ∈ N` by t`(n) := Zn1 × · · · × Zn` . Any
group x ∈ GRκ codes a set of `-tuples, namely the set of all n ∈ N`
such that t`(n) ≤ x . Conversely, if S ⊆ N`, then the group⊕

n∈S

(Zn1 × · · · × Zn`)

codes S.
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and only if Zm × Zn = Zp.

Encode a tuple n = (n1, . . . ,n`) ∈ N` by t`(n) := Zn1
q1
× · · · × Zn`

q`
. Any

group x ∈ GRκ codes a set of `-tuples, namely the set of all n ∈ N`
such that t`(n) ≤ x . Conversely, if S ⊆ N`, then the group

?∏
n∈S

(
Zqn × Zn1

q1
× · · · × Zn`

q`

)
codes S. Decode using Kurosch’s Theorem.
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Answers for GR×,≤κ ...

Theorem (Kurosch’s Theorem)
A subgroup H of a free product

∏?
j Aj is itself a free product of the form

F ?

?∏
k

x−1
k Ukxk

where F is a free group and each x−1
k Ukxk is the conjugate of a

subgroup Uk of one of the factors Aj by an element of the free group∏?
j Aj .

Proof (Continued...)

Unfortunately, none of Z or Zq is (seemingly) definable in GR×,≤κ .
Instead, fix ≤-minimal elements w0,w1, . . . ,w`. Show that, for any i
and j , the set of pairs (wk

i ,w
k
j ) is definable in GR×,≤κ with wi and wj as

parameters.
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Open Questions...

Question
How complicated is the first-order theory of GR×κ ?

How complicated is the first-order theory of GR≤κ ?

Theorem (Tamvana Makuluni)
The first-order theory of F≤κ (fields with the subfield relation) computes
true second-order arithmetic.
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Open Questions...

Question
Does the Σ1 theory of LO+

κ admit a nice characterization?

Remark
Any finite preorder embeds into LOE

κ , so the Σ1-theory of LOE
κ admits

a nice characterization.

Question
How complicated is the first-order theory of LO4

κ (order types with
embeddability)?
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Fixed Answers...

Question
Is there an element x such that x 6= x + x and x = x + x + x?

Is there a cardinal x such that x 6= x + x and x = x + x + x? NO.

Is there a linear order x such that x 6∼= x + x and x ∼= x + x + x?
NO.

Is there a Boolean algebra x such that x 6∼= x ⊕ x and
x ∼= x ⊕ x ⊕ x? YES.

Is there a group x such that x 6∼= x × x and x ∼= x × x × x? YES.
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