Properties of limitwise monotonicity spectra of $$\Sigma_2^0$$ sets

Kalimullin I.

Kazan Federal University e-mail:Iskander.Kalimullin@ksu.ru

Oberwolfach Meeting, Computability Theory, 2012

Kalimullin I.Sh. Properties of limitwise monotonicity spectra

.

▶ A countable family $\mathcal{F} \subset 2^{\omega}$ is (uniformly) **x**-c.e. if

$$\mathcal{F} = \{ W_{f(n)}^X : n \in \omega \}$$

for some computable function f and $X \in \mathbf{x}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

▶ A countable family $\mathcal{F} \subset 2^{\omega}$ is (uniformly) **x**-c.e. if

$$\mathcal{F} = \{ W_{f(n)}^X : n \in \omega \}$$

for some computable function f and $X \in \mathbf{x}$.

▶ A countable family $\mathcal{F} \subset 2^{\omega}$ is (uniformly) **x**-computable if

$$\iota(\mathcal{F}) = \{ \mathbf{A} \oplus \overline{\mathbf{A}} : \mathbf{A} \in \mathcal{F} \}$$

is **x**-c.e.

A B K A B K

▶ A countable family $\mathcal{F} \subset 2^{\omega}$ is (uniformly) **x**-c.e. if

$$\mathcal{F} = \{ W_{f(n)}^X : n \in \omega \}$$

for some computable function f and $X \in \mathbf{x}$.

▶ A countable family $\mathcal{F} \subset 2^{\omega}$ is (uniformly) **x**-computable if

$$\iota(\mathcal{F}) = \{ \mathbf{A} \oplus \overline{\mathbf{A}} : \mathbf{A} \in \mathcal{F} \}$$

is **X**-c.e.

- SpE $(\mathcal{F}) = \{\mathbf{x} : \mathcal{F} \text{ is } \mathbf{x}\text{-c.e.}\}$
- SpC $(\mathcal{F}) = \{ \mathbf{x} : \mathcal{F} \text{ is } \mathbf{x} \text{-computable} \}$

▶ A countable family $\mathcal{F} \subset 2^{\omega}$ is (uniformly) **x**-c.e. if

$$\mathcal{F} = \{ W_{f(n)}^X : n \in \omega \}$$

for some computable function f and $X \in \mathbf{x}$.

▶ A countable family $\mathcal{F} \subset 2^{\omega}$ is (uniformly) **x**-computable if

$$\iota(\mathcal{F}) = \{ \mathbf{A} \oplus \overline{\mathbf{A}} : \mathbf{A} \in \mathcal{F} \}$$

is **X**-c.e.

- SpE $(\mathcal{F}) = \{\mathbf{x} : \mathcal{F} \text{ is } \mathbf{x}\text{-c.e.}\}$
- SpC $(\mathcal{F}) = \{ \mathbf{x} : \mathcal{F} \text{ is } \mathbf{x} \text{-computable} \}$
- SpC $(\mathcal{F}) =$ SpE $(\iota(\mathcal{F}))$

Non-typical examples

▶ SpE({A}) = SpE({{n} : $n \in A$ }) = {**x** : A is **x**-c.e.}

Kalimullin I.Sh. Properties of limitwise monotonicity spectra

Non-typical examples

- ▶ SpE({A}) = SpE({{n} : $n \in A$ }) = {**x** : A is **x**-c.e.}
- ▶ SpE $({A \oplus \overline{A}}) = {\mathbf{x} : A \text{ is } \mathbf{x}\text{-computable}}$

(*) *) *) *)

Non-typical examples

- ▶ SpE({A}) = SpE({{n} : $n \in A$ }) = {x : A is x-c.e.}
- ▶ SpE $({A \oplus \overline{A}}) = {\mathbf{x} : A \text{ is } \mathbf{x}\text{-computable}}$
- ▶ SpE({{n}: $n \in A$ } ∪ { ω }) = {**x** : A is **x**'-c.e.}

Non-typical examples

- ▶ SpE({A}) = SpE({{n} : $n \in A$ }) = {**x** : A is **x**-c.e.}
- ▶ SpE $({A \oplus \overline{A}}) = {\mathbf{x} : A \text{ is } \mathbf{x}\text{-computable}}$
- ▶ SpE({{n}: $n \in A$ } ∪ { ω }) = {x : A is x'-c.e.}
- ► (Jockusch). **SpE** (\mathcal{COMP}) = **SpE** (\mathcal{INFCE}) = {**x** : **0**["] ≤ **x**[']}.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Non-typical examples

- ▶ SpE({A}) = SpE({{n} : $n \in A$ }) = {**x** : A is **x**-c.e.}
- ▶ SpE $({A \oplus \overline{A}}) = {\mathbf{x} : A \text{ is } \mathbf{x}\text{-computable}}$
- ▶ **SpE** ({{*n*} : *n* ∈ *A*} ∪ { ω }) = {**x** : *A* is **x**'-c.e.}
- ► (Jockusch). **SpE** (\mathcal{COMP}) = **SpE** (\mathcal{INFCE}) = {**x** : **0**["] ≤ **x**[']}.
- ▶ (Yates). **SpE** (COINFCE) = {**x** : **0**^{'''} ≤ **x**^{''}}.

• • = • • = •

Typical examples I

▶ (Wehner). Let $\mathcal{W} = \{\{n\} \oplus F : F \text{ is finite } \& F \neq W_n\}$. Then **SpE**(\mathcal{W}) = the non-zero degrees.

A B K A B K

Typical examples I

- ▶ (Wehner). Let $W = \{\{n\} \oplus F : F \text{ is finite } \& F \neq W_n\}$. Then **SpE**(W) = the non-zero degrees.
- ▶ Let $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (\varphi_n \text{ is total} \implies F \neq \varphi_n)\}$. Then \mathcal{U} is c.e. but **SpC** (\mathcal{U}) = non-zero.

(4) E (4) (4) E (4)

Typical examples I

- ▶ (Wehner). Let $W = \{\{n\} \oplus F : F \text{ is finite } \& F \neq W_n\}$. Then **SpE**(W) = the non-zero degrees.
- ▶ Let $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (\varphi_n \text{ is total} \implies F \neq \varphi_n)\}$. Then \mathcal{U} is c.e. but **SpC** (\mathcal{U}) = non-zero.

Corollary. 1. (Slaman, Wehner) There are non-computable structures which are computable in every nonzero degree 2. There are computable non-decidable structures which are decidable in every nonzero degree

Typical examples II

 \blacktriangleright (Csima, K). If

 $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (W_n \text{ is infinite } \Longrightarrow F \cap W_n \neq \emptyset)\}$

A B K A B K

Typical examples II

▶ (Csima, K). If

 $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (W_n \text{ is infinite } \Longrightarrow F \cap W_n \neq \emptyset)\}$

then \mathcal{U} is c.e. but hyperimume \subset **SpC** (\mathcal{U}) \subseteq bi-immune.

A B K A B K

Typical examples II

▶ (Csima, K). If

 $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (W_n \text{ is infinite } \Longrightarrow F \cap W_n \neq \emptyset)\}$

then \mathcal{U} is c.e. but hyperimunne \subset **SpC** (\mathcal{U}) \subseteq bi-immune. (Csima, K). If

 $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (\{D_{\varphi_n(k)}\}_{k \in \omega} \text{ is a strong array} \Longrightarrow \\ (\exists k)[D_{\varphi_n(k)} \subseteq F]\}$

(4) E (4) (4) E (4)

Typical examples II

▶ (Csima, K). If

 $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (W_n \text{ is infinite } \Longrightarrow F \cap W_n \neq \emptyset)\}$

then \mathcal{U} is c.e. but hyperimunne \subset **SpC** (\mathcal{U}) \subseteq bi-immune. (Csima, K). If

 $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (\{D_{\varphi_n(k)}\}_{k \in \omega} \text{ is a strong array} \Longrightarrow \\ (\exists k)[D_{\varphi_n(k)} \subseteq F]\}$

then \mathcal{U} is c.e. but **SpC** (\mathcal{U}) = hyperimunne.

Typical examples III

▶ If $A \in \mathbf{a}$ is low then for $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& F \neq W_n^A\}$. we have $\mathbf{SpE}(\mathcal{U}) = \{\mathbf{x} : \mathbf{x}' \leq_m \mathbf{a}'\} = \text{not below } \mathbf{a}.$

(4) (3) (4) (4) (4)

Typical examples III

• If $A \in \mathbf{a}$ is low then for $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& F \neq W_n^A\}$. we have $\mathbf{SpE}(\mathcal{U}) = \{\mathbf{x} : \mathbf{x}' \leq_m \mathbf{a}'\} = \text{not below } \mathbf{a}.$

▶ In general, if C is a class with a Δ_2^0 -enumeration closed downward under m-reducibility then there is a Δ_2^0 -enumeration $\{U_n\}_{n \in \omega}$ of the class C such that

 $\mathbf{Sp}\left(\{\{n\}\oplus F: F \text{ is finite \& } F \neq U_n\}\right) = \{\mathbf{x}: \mathbf{x}' \notin \mathcal{C}\}.$

Typical examples III

• If $A \in \mathbf{a}$ is low then for $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& F \neq W_n^A\}$. we have $\mathbf{SpE}(\mathcal{U}) = \{\mathbf{x} : \mathbf{x}' \leq_m \mathbf{a}'\} = \text{not below } \mathbf{a}.$

• In general, if C is a class with a Δ_2^0 -enumeration closed downward under m-reducibility then there is a Δ_2^0 -enumeration $\{U_n\}_{n\in\omega}$ of the class C such that

 $\mathbf{Sp}\left(\{\{n\}\oplus F: F \text{ is finite \& } F \neq U_n\}\right) = \{\mathbf{x}: \mathbf{x}' \notin \mathcal{C}\}.$

▶ In particular,

Sp $(\{\{n\} \oplus F : F \text{ is finite } \& F \neq U_n\}) = \text{non-superlow}$

for a Δ_2^0 -enumeration $\{U_n\}_{n\in\omega}$ of all ω -c.e. sets.

Typical examples IV

• If
$$A \in \mathbf{a}$$
 is c.e. then for

 $\mathcal{U} = \{\{n\} \oplus F : F \text{ is a range of a 1-1 p.r.f. \& } F \neq W_n^A\}.$ we have $\mathsf{SpE}(\mathcal{U}) = \{\mathbf{x} : \mathbf{x} \not\leq \mathbf{a}\}.$

Typical examples V

▶ If $\{X'_n\}_{n \in \omega}$ is a Δ_2^0 -sequence such that $X_n >_T \emptyset$ and $\deg(X_n) \cap \deg(X_m) = \mathbf{0}, n \neq m$, then for

$$\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& F \neq W_n^{X_n}\}.$$

we have $SpE(\mathcal{U}) = \text{non-zero}$, but NOT uniformly.

Corollary. There are families \mathcal{W} and \mathcal{U} of finite sets with the same **SpE**, such that an enumeration of \mathcal{U} can not be derived uniformly from arbitrary enumeration of \mathcal{W} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Typical spectra

▶ In all typical examples the degree spectrum is co-null.

- ▶ In all typical examples the degree spectrum is co-null.
- ▶ In all typical examples the degree spectrum is co-meager.

→ 3 → 4 3

- ▶ In all typical examples the degree spectrum is co-null.
- ▶ In all typical examples the degree spectrum is co-meager.
- What we can say about \mathcal{U} if **SpE** (\mathcal{U}) is co-null (co-meager)?

(4) (3) (4) (4) (4)

- ▶ In all typical examples the degree spectrum is co-null.
- ▶ In all typical examples the degree spectrum is co-meager.
- What we can say about \mathcal{U} if **SpE** (\mathcal{U}) is co-null (co-meager)?
- 1. Each element of \mathcal{U} must be c.e.

- ▶ In all typical examples the degree spectrum is co-null.
- ▶ In all typical examples the degree spectrum is co-meager.
- What we can say about \mathcal{U} if **SpE** (\mathcal{U}) is co-null (co-meager)?
- 1. Each element of ${\mathcal U}$ must be c.e.
- 2. The set $D(\mathcal{U}) = \{ n : (\exists A \in \mathcal{U}) [D_n \subseteq A] \}$ must be c.e.

- 4 同 ト - 4 回 ト - 4 回 ト

- ▶ In all typical examples the degree spectrum is co-null.
- ▶ In all typical examples the degree spectrum is co-meager.
- What we can say about \mathcal{U} if **SpE** (\mathcal{U}) is co-null (co-meager)?
- 1. Each element of \mathcal{U} must be c.e.
- 2. The set $D(\mathcal{U}) = \{ n : (\exists A \in \mathcal{U}) [D_n \subseteq A] \}$ must be c.e.
- 3. The index set $I(\mathcal{U})$ must be Σ_3^0 . If \mathcal{U} contains only finite sets then $I(\mathcal{U}) \in \Sigma_2^0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ In all typical examples the degree spectrum is co-null.
- ▶ In all typical examples the degree spectrum is co-meager.
- What we can say about \mathcal{U} if **SpE** (\mathcal{U}) is co-null (co-meager)?
- 1. Each element of ${\mathcal U}$ must be c.e.
- 2. The set $D(\mathcal{U}) = \{ n : (\exists A \in \mathcal{U}) [D_n \subseteq A] \}$ must be c.e.
- 3. The index set $I(\mathcal{U})$ must be Σ_3^0 . If \mathcal{U} contains only finite sets then $I(\mathcal{U}) \in \Sigma_2^0$.

Problem. Are 1,2 and 3 enough?

- ▶ In all typical examples the degree spectrum is co-null.
- ▶ In all typical examples the degree spectrum is co-meager.
- What we can say about \mathcal{U} if **SpE** (\mathcal{U}) is co-null (co-meager)?
- 1. Each element of ${\mathcal U}$ must be c.e.
- 2. The set $D(\mathcal{U}) = \{ n : (\exists A \in \mathcal{U}) [D_n \subseteq A] \}$ must be c.e.
- 3. The index set $I(\mathcal{U})$ must be Σ_3^0 . If \mathcal{U} contains only finite sets then $I(\mathcal{U}) \in \Sigma_2^0$.

Problem. Are 1,2 and 3 enough? Answer. No.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Why the answer is No for co-meager spectra

Theorem. (Greenberg, Montalban, Slaman). There is a family \mathcal{U} such that $SpE(\mathcal{U})$ is co-null and meager.

(4) (3) (4) (4) (4)

Special case of families

• Given an infinite set S. Then for the family $\mathcal{LM}(S) = \{ \omega \upharpoonright m : m \in S \}$ conditions 1,2 and 3 are equivalent to $S \in \Sigma_2^0$.

• • = • • = •

Special case of families

- Given an infinite set S. Then for the family $\mathcal{LM}(S) = \{ \omega \upharpoonright m : m \in S \}$ conditions 1,2 and 3 are equivalent to $S \in \Sigma_2^0$.
- ▶ **SpE** $(\mathcal{LM}(S)) =$ **Sp** $(\sum_{m \in S} \mathbb{Z}_{p^m})$ is limitwise montonicity spectrum of S.

A B K A B K

Special case of families

- Given an infinite set S. Then for the family $\mathcal{LM}(S) = \{ \omega \upharpoonright m : m \in S \}$ conditions 1,2 and 3 are equivalent to $S \in \Sigma_2^0$.
- ▶ **SpE** $(\mathcal{LM}(S)) =$ **Sp** $(\sum_{m \in S} \mathbb{Z}_{p^m})$ is limitwise montonicity spectrum of *S*.
- Given a sequence of infinite sets $S = \{S_n\}_{n \in \omega}$. Then for the family $\mathcal{LM}(S) = \{\{n\} \oplus \omega \mid m : m \in S_n\}$ conditions 1,2 and 3 are equivalent to S is uniformly Σ_2^0 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Special case of families

- Given an infinite set S. Then for the family $\mathcal{LM}(S) = \{ \omega \upharpoonright m : m \in S \}$ conditions 1,2 and 3 are equivalent to $S \in \Sigma_2^0$.
- ▶ **SpE** $(\mathcal{LM}(S)) =$ **Sp** $(\sum_{m \in S} \mathbb{Z}_{p^m})$ is limitwise montonicity spectrum of *S*.
- Given a sequence of infinite sets $S = \{S_n\}_{n \in \omega}$. Then for the family $\mathcal{LM}(S) = \{\{n\} \oplus \omega \mid m : m \in S_n\}$ conditions 1,2 and 3 are equivalent to S is uniformly Σ_2^0 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Special case of families

- Given an infinite set S. Then for the family $\mathcal{LM}(S) = \{\omega \upharpoonright m : m \in S\}$ conditions 1,2 and 3 are equivalent to $S \in \Sigma_2^0$.
- ▶ **SpE** $(\mathcal{LM}(S)) =$ **Sp** $(\sum_{m \in S} \mathbb{Z}_{p^m})$ is limitwise montonicity spectrum of *S*.
- Given a sequence of infinite sets $S = \{S_n\}_{n \in \omega}$. Then for the family $\mathcal{LM}(S) = \{\{n\} \oplus \omega \upharpoonright m : m \in S_n\}$ conditions 1,2 and 3 are equivalent to S is uniformly Σ_2^0 .
- ▶ **SpE** $(\mathcal{LM}(\mathcal{S})) =$ **Sp** $(\sum_{n \in \omega} \sum_{m \in S_n} \mathbb{Z}_{p_n^m})$ is limitwise montonicity specrum of \mathcal{S} .

More typical examples

▶ (K, Khoussainov, Melnikov). Let $S = \{S_n\}_{n \in \omega}$ be such that

$$S_n = \begin{cases} \omega, & \text{if } W_n \text{ is infinite} \\ \omega - |W_n|, & \text{if } W_n \text{ is finite.} \end{cases}$$

- 4 同 6 - 4 三 6 - 4 三 6

More typical examples

▶ (K, Khoussainov, Melnikov). Let $S = \{S_n\}_{n \in \omega}$ be such that

$$m{S}_n = egin{cases} \omega, & ext{if } m{W}_n ext{ is infinite} \ \omega - |m{W}_n|, & ext{if } m{W}_n ext{ is finite}. \end{cases}$$

Then

$$\mathcal{LM}(\mathcal{S}) = \{\{n\} \oplus \omega \upharpoonright m : m \neq |W_n|\}$$

and

hyperimmune \subseteq **SpE** ($\mathcal{LM}(\mathcal{S})$) \subset non-zero.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

More typical examples

▶ (K, Khoussainov, Melnikov). Let $S = \{S_n\}_{n \in \omega}$ be such that

$$\mathcal{S}_n = egin{cases} \omega, & ext{if } \mathcal{W}_n ext{ is infinite} \ \omega - |\mathcal{W}_n|, & ext{if } \mathcal{W}_n ext{ is finite}. \end{cases}$$

Then

$$\mathcal{LM}(\mathcal{S}) = \{\{n\} \oplus \omega \upharpoonright m : m \neq |W_n|\}$$

and

hyperimmune \subseteq **SpE** ($\mathcal{LM}(\mathcal{S})$) \subset non-zero.

▶ (Wallbaum). There are exists a set *S* such that $SpE(\mathcal{LM}(S))$ is co-null (in fact, it contains all 2-random) and $SpE(\mathcal{LM}(S)) \subseteq$ non-zero.

(日) (四) (日) (日)

Theorem. (K, Faizrahmanov). If \mathcal{S} is uniformly Σ_2^0 then

Kalimullin I.Sh. Properties of limitwise monotonicity spectra

Theorem. (K, Faizrahmanov). If S is uniformly Σ_2^0 then 1. $\mathbf{GH}_1 \subseteq \mathbf{SpE}(\mathcal{LM}(S));$

• • = • • = •

Theorem. (K, Faizrahmanov). If \mathcal{S} is uniformly Σ_2^0 then

- 1. $GH_1 \subseteq SpE(\mathcal{LM}(\mathcal{S}));$
- 2. 2-generic \subseteq **SpE** ($\mathcal{LM}(\mathcal{S})$);

Theorem. (K, Faizrahmanov). If \mathcal{S} is uniformly Σ_2^0 then

- 1. $GH_1 \subseteq SpE(\mathcal{LM}(\mathcal{S}));$
- 2. 2-generic \subseteq **SpE** ($\mathcal{LM}(\mathcal{S})$);
- 3. 1-generic $\cap \Delta_2^0 \cap \mathsf{SpE}(\mathcal{LM}(\mathcal{S})) \neq \emptyset$.

3 × 4 3 ×

Theorem. (K, Faizrahmanov). If \mathcal{S} is uniformly Σ_2^0 then

- 1. $GH_1 \subseteq SpE(\mathcal{LM}(\mathcal{S}));$
- 2. 2-generic \subseteq **SpE**($\mathcal{LM}(\mathcal{S})$);
- 3. 1-generic $\cap \Delta_2^0 \cap \mathsf{SpE}(\mathcal{LM}(\mathcal{S})) \neq \emptyset$.
- 4. 1-random \subseteq SpE ($\mathcal{LM}(\mathcal{S}) \implies \mathbf{0} \in$ SpE ($\mathcal{LM}(\mathcal{S})$);

Theorem. (K, Faizrahmanov). If \mathcal{S} is uniformly Σ_2^0 then

- 1. $GH_1 \subseteq SpE(\mathcal{LM}(\mathcal{S}));$
- 2. 2-generic \subseteq **SpE** ($\mathcal{LM}(\mathcal{S})$);
- 3. 1-generic $\cap \Delta_2^0 \cap \mathsf{SpE}(\mathcal{LM}(\mathcal{S})) \neq \emptyset$.
- 4. 1-random \subseteq SpE ($\mathcal{LM}(\mathcal{S}) \implies \mathbf{0} \in$ SpE ($\mathcal{LM}(\mathcal{S})$);

Theorem. (K, Faizrahmanov). There is an $\mathcal{S} \in \Delta_2^0$ such that **SpE** $(\mathcal{LM}(\mathcal{S}))$ is null.

Theorem. (K, Faizrahmanov). If \mathcal{S} is uniformly Σ_2^0 then

- 1. $GH_1 \subseteq SpE(\mathcal{LM}(\mathcal{S}));$
- 2. 2-generic \subseteq **SpE** ($\mathcal{LM}(\mathcal{S})$);
- 3. 1-generic $\cap \Delta_2^0 \cap \text{SpE}(\mathcal{LM}(\mathcal{S})) \neq \emptyset$.
- 4. 1-random \subseteq SpE ($\mathcal{LM}(\mathcal{S}) \implies \mathbf{0} \in$ SpE ($\mathcal{LM}(\mathcal{S})$);

Theorem. (K, Faizrahmanov). There is an $\mathcal{S} \in \Delta_2^0$ such that $SpE(\mathcal{LM}(\mathcal{S}))$ is null.

Corollary (Greenberg, Montalban, Slaman) There is a structure (indeed an abelian p-group) whose degree spectrum is co-meager and null.

・ロト ・ 一下 ・ ・ コト・

Open questions I

▶ We know that for

 $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (W_n \text{ is infinite } \Longrightarrow F \cap W_n \neq \emptyset)\}$

we have hyperimunne \subset **SpC** (\mathcal{U}) \subseteq bi-immune. Is **SpC** (\mathcal{U}) = bi-immune?

- 4 周 ト 4 ヨ ト 4 ヨ ト

Open questions I

▶ We know that for

 $\mathcal{U} = \{\{n\} \oplus F : F \text{ is finite } \& (W_n \text{ is infinite } \Longrightarrow F \cap W_n \neq \emptyset)\}$

we have hyperimunne \subset **SpC** (\mathcal{U}) \subseteq bi-immune. Is **SpC** (\mathcal{U}) = bi-immune?

▶ We know that for

$$\mathcal{U} = \{\{n\} \oplus \omega \upharpoonright m : m \neq |W_n|\}$$

we have hyperimmune \subseteq SpE (\mathcal{U}) \subset non-zero. SpE (\mathcal{U}) = ...?

Open questions II

Kalimullin I.Sh. Properties of limitwise monotonicity spectra

<ロ> (日) (日) (日) (日) (日)

Open questions II

▶ Let $SpE(\mathcal{LM}(S_1)) \subseteq SpE(\mathcal{LM}(S_2))$. Does there exists an effective procedure getting an enumeration of $\mathcal{LM}(S_1)$) given any enumeration of $\mathcal{LM}(S_2)$?