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Degree spectra of enumerability
Spectra of limitwise monotonicity

X -c.e. families

I A countable family F ⊂ 2ω is (uniformly) x-c.e. if

F = {W X
f (n) : n ∈ ω}

for some computable function f and X ∈ x.

I A countable family F ⊂ 2ω is (uniformly) x-computable if

ι(F) = {A⊕ A : A ∈ F}

is x-c.e.
I SpE (F) = {x : F is x-c.e.}
I SpC (F) = {x : F is x-computable}
I SpC (F) = SpE (ι(F))
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Spectra of limitwise monotonicity

Non-typical examples

I SpE ({A}) = SpE ({{n} : n ∈ A}) = {x : A is x-c.e.}

I SpE ({A⊕ A}) = {x : A is x-computable}
I SpE ({{n} : n ∈ A} ∪ {ω}) = {x : A is x′-c.e.}
I (Jockusch).

SpE (COMP) = SpE (INFCE) = {x : 0′′ ≤ x′}.
I (Yates). SpE (COINFCE) = {x : 0′′′ ≤ x′′}.
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Degree spectra of enumerability
Spectra of limitwise monotonicity

Typical examples I

I (Wehner). Let W = {{n}⊕ F : F is finite & F 6= Wn}. Then
SpE (W) = the non-zero degrees.

I Let U = {{n}⊕F : F is finite & (ϕn is total =⇒ F 6= ϕn)}.
Then U is c.e. but SpC (U) = non-zero.

Corollary. 1. (Slaman, Wehner) There are non-computable
structures which are computable in every nonzero degree
2. There are computable non-decidable structures which are
decidable in every nonzero degree
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Typical examples II

I (Csima, K). If

U = {{n}⊕F : F is finite & (Wn is infinite =⇒ F∩Wn 6= ∅)}

then U is c.e. but hyperimunne ⊂ SpC (U) ⊆ bi-immune.
I (Csima, K). If

U={{n} ⊕ F : F is finite & ({Dϕn(k)}k∈ω is a strong array =⇒
(∃k)[Dϕn(k) ⊆ F ]}

then U is c.e. but SpC (U) = hyperimunne.
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Typical examples III

I If A ∈ a is low then for
U = {{n} ⊕ F : F is finite & F 6= W A

n }. we have
SpE (U) = {x : x′ 6≤m a′} = not below a.

I In general, if C is a class with a ∆0
2-enumeration closed

downward under m-reducibility then there is a
∆0

2-enumeration {Un}n∈ω of the class C such that

Sp ({{n} ⊕ F : F is finite & F 6= Un}) = {x : x′ /∈ C}.

I In particular,

Sp ({{n} ⊕ F : F is finite & F 6= Un}) = non-superlow

for a ∆0
2-enumeration {Un}n∈ω of all ω-c.e. sets.
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Spectra of limitwise monotonicity

Typical examples IV

I If A ∈ a is c.e. then for

U = {{n} ⊕ F : F is a range of a 1-1 p.r.f. & F 6= W A
n }.

we have SpE (U) = {x : x 6≤ a}.
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Typical examples V

I If {X ′
n}n∈ω is a ∆0

2-sequence such that Xn >T ∅ and
deg(Xn) ∩ deg(Xm) = 0, n 6= m, then for

U = {{n} ⊕ F : F is finite & F 6= W Xn
n }.

we have SpE (U) = non-zero, but NOT uniformly.

Corollary. There are families W and U of finite sets with the
same SpE , such that an enumeration of U can not be derived
uniformly from arbitrary enumeration of W.
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Degree spectra of enumerability
Spectra of limitwise monotonicity

Typical spectra

I In all typical examples the degree spectrum is co-null.

I In all typical examples the degree spectrum is co-meager.
I What we can say about U if SpE (U) is co-null (co-meager)?

1. Each element of U must be c.e.
2. The set D(U) = {n : (∃A ∈ U)[Dn ⊆ A]} must be c.e.
3. The index set I(U) must be Σ0

3. If U contains only finite
sets then I(U) ∈ Σ0

2.

Problem. Are 1,2 and 3 enough?
Answer. No.
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Degree spectra of enumerability
Spectra of limitwise monotonicity

Why the answer is No for co-meager spectra

Theorem. (Greenberg, Montalban, Slaman). There is a family U
such that SpE (U) is co-null and meager.
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Degree spectra of enumerability
Spectra of limitwise monotonicity

Special case of families

I Given an infinite set S. Then for the family
LM(S) = {ω � m : m ∈ S} conditions 1,2 and 3 are
equivalent to S ∈ Σ0

2.

I SpE (LM(S)) = Sp (
∑

m∈S Zpm) is limitwise montonicity
spectrum of S.

I Given a sequence of infinite sets S = {Sn}n∈ω. Then for the
family LM(S) = {{n} ⊕ ω � m : m ∈ Sn} conditions 1,2
and 3 are equivalent to S is uniformly Σ0

2.
I SpE (LM(S)) = Sp (

∑
n∈ω

∑
m∈Sn

Zpm
n
) is limitwise

montonicity specrum of S.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

Special case of families

I Given an infinite set S. Then for the family
LM(S) = {ω � m : m ∈ S} conditions 1,2 and 3 are
equivalent to S ∈ Σ0

2.
I SpE (LM(S)) = Sp (

∑
m∈S Zpm) is limitwise montonicity

spectrum of S.

I Given a sequence of infinite sets S = {Sn}n∈ω. Then for the
family LM(S) = {{n} ⊕ ω � m : m ∈ Sn} conditions 1,2
and 3 are equivalent to S is uniformly Σ0

2.
I SpE (LM(S)) = Sp (

∑
n∈ω

∑
m∈Sn

Zpm
n
) is limitwise

montonicity specrum of S.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

Special case of families

I Given an infinite set S. Then for the family
LM(S) = {ω � m : m ∈ S} conditions 1,2 and 3 are
equivalent to S ∈ Σ0

2.
I SpE (LM(S)) = Sp (

∑
m∈S Zpm) is limitwise montonicity

spectrum of S.
I Given a sequence of infinite sets S = {Sn}n∈ω. Then for the

family LM(S) = {{n} ⊕ ω � m : m ∈ Sn} conditions 1,2
and 3 are equivalent to S is uniformly Σ0

2.

I SpE (LM(S)) = Sp (
∑

n∈ω

∑
m∈Sn

Zpm
n
) is limitwise

montonicity specrum of S.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

Special case of families

I Given an infinite set S. Then for the family
LM(S) = {ω � m : m ∈ S} conditions 1,2 and 3 are
equivalent to S ∈ Σ0

2.
I SpE (LM(S)) = Sp (

∑
m∈S Zpm) is limitwise montonicity

spectrum of S.
I Given a sequence of infinite sets S = {Sn}n∈ω. Then for the

family LM(S) = {{n} ⊕ ω � m : m ∈ Sn} conditions 1,2
and 3 are equivalent to S is uniformly Σ0

2.

I SpE (LM(S)) = Sp (
∑

n∈ω

∑
m∈Sn

Zpm
n
) is limitwise

montonicity specrum of S.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

Special case of families

I Given an infinite set S. Then for the family
LM(S) = {ω � m : m ∈ S} conditions 1,2 and 3 are
equivalent to S ∈ Σ0

2.
I SpE (LM(S)) = Sp (

∑
m∈S Zpm) is limitwise montonicity

spectrum of S.
I Given a sequence of infinite sets S = {Sn}n∈ω. Then for the

family LM(S) = {{n} ⊕ ω � m : m ∈ Sn} conditions 1,2
and 3 are equivalent to S is uniformly Σ0

2.
I SpE (LM(S)) = Sp (

∑
n∈ω

∑
m∈Sn

Zpm
n
) is limitwise

montonicity specrum of S.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

More typical examples

I (K, Khoussainov, Melnikov). Let S = {Sn}n∈ω be such that

Sn =

{
ω, if Wn is infinite
ω − |Wn|, if Wn is finite.

Then
LM(S) = {{n} ⊕ ω � m : m 6= |Wn|}

and
hyperimmune ⊆ SpE (LM(S)) ⊂ non-zero.

I (Wallbaum). There are exists a set S such that
SpE (LM(S)) is co-null (in fact, it contains all 2-random)
and SpE (LM(S)) ⊆ non-zero.
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More typical examples

I (K, Khoussainov, Melnikov). Let S = {Sn}n∈ω be such that

Sn =

{
ω, if Wn is infinite
ω − |Wn|, if Wn is finite.

Then
LM(S) = {{n} ⊕ ω � m : m 6= |Wn|}

and
hyperimmune ⊆ SpE (LM(S)) ⊂ non-zero.
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New results

Theorem. (K, Faizrahmanov). If S is uniformly Σ0
2 then

1. GH1 ⊆ SpE (LM(S));
2. 2-generic ⊆ SpE (LM(S));
3. 1-generic ∩∆0

2 ∩ SpE (LM(S)) 6= ∅.
4. 1-random ⊆ SpE (LM(S) =⇒ 0 ∈ SpE (LM(S));

Theorem. (K, Faizrahmanov). There is an S ∈ ∆0
2 such that

SpE (LM(S)) is null.
Corollary (Greenberg, Montalban, Slaman) There is a structure
(indeed an abelian p-group) whose degree spectrum is
co-meager and null.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

New results

Theorem. (K, Faizrahmanov). If S is uniformly Σ0
2 then

1. GH1 ⊆ SpE (LM(S));

2. 2-generic ⊆ SpE (LM(S));
3. 1-generic ∩∆0

2 ∩ SpE (LM(S)) 6= ∅.
4. 1-random ⊆ SpE (LM(S) =⇒ 0 ∈ SpE (LM(S));

Theorem. (K, Faizrahmanov). There is an S ∈ ∆0
2 such that

SpE (LM(S)) is null.
Corollary (Greenberg, Montalban, Slaman) There is a structure
(indeed an abelian p-group) whose degree spectrum is
co-meager and null.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

New results

Theorem. (K, Faizrahmanov). If S is uniformly Σ0
2 then

1. GH1 ⊆ SpE (LM(S));
2. 2-generic ⊆ SpE (LM(S));

3. 1-generic ∩∆0
2 ∩ SpE (LM(S)) 6= ∅.

4. 1-random ⊆ SpE (LM(S) =⇒ 0 ∈ SpE (LM(S));
Theorem. (K, Faizrahmanov). There is an S ∈ ∆0

2 such that
SpE (LM(S)) is null.
Corollary (Greenberg, Montalban, Slaman) There is a structure
(indeed an abelian p-group) whose degree spectrum is
co-meager and null.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

New results

Theorem. (K, Faizrahmanov). If S is uniformly Σ0
2 then

1. GH1 ⊆ SpE (LM(S));
2. 2-generic ⊆ SpE (LM(S));
3. 1-generic ∩∆0

2 ∩ SpE (LM(S)) 6= ∅.

4. 1-random ⊆ SpE (LM(S) =⇒ 0 ∈ SpE (LM(S));
Theorem. (K, Faizrahmanov). There is an S ∈ ∆0

2 such that
SpE (LM(S)) is null.
Corollary (Greenberg, Montalban, Slaman) There is a structure
(indeed an abelian p-group) whose degree spectrum is
co-meager and null.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

New results

Theorem. (K, Faizrahmanov). If S is uniformly Σ0
2 then

1. GH1 ⊆ SpE (LM(S));
2. 2-generic ⊆ SpE (LM(S));
3. 1-generic ∩∆0

2 ∩ SpE (LM(S)) 6= ∅.
4. 1-random ⊆ SpE (LM(S) =⇒ 0 ∈ SpE (LM(S));

Theorem. (K, Faizrahmanov). There is an S ∈ ∆0
2 such that

SpE (LM(S)) is null.
Corollary (Greenberg, Montalban, Slaman) There is a structure
(indeed an abelian p-group) whose degree spectrum is
co-meager and null.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

New results

Theorem. (K, Faizrahmanov). If S is uniformly Σ0
2 then

1. GH1 ⊆ SpE (LM(S));
2. 2-generic ⊆ SpE (LM(S));
3. 1-generic ∩∆0

2 ∩ SpE (LM(S)) 6= ∅.
4. 1-random ⊆ SpE (LM(S) =⇒ 0 ∈ SpE (LM(S));

Theorem. (K, Faizrahmanov). There is an S ∈ ∆0
2 such that

SpE (LM(S)) is null.

Corollary (Greenberg, Montalban, Slaman) There is a structure
(indeed an abelian p-group) whose degree spectrum is
co-meager and null.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

New results

Theorem. (K, Faizrahmanov). If S is uniformly Σ0
2 then

1. GH1 ⊆ SpE (LM(S));
2. 2-generic ⊆ SpE (LM(S));
3. 1-generic ∩∆0

2 ∩ SpE (LM(S)) 6= ∅.
4. 1-random ⊆ SpE (LM(S) =⇒ 0 ∈ SpE (LM(S));

Theorem. (K, Faizrahmanov). There is an S ∈ ∆0
2 such that

SpE (LM(S)) is null.
Corollary (Greenberg, Montalban, Slaman) There is a structure
(indeed an abelian p-group) whose degree spectrum is
co-meager and null.

Kalimullin I.Sh. Рrореrtiеs оf limitwise monotoniсitу sресtrа



Degree spectra of enumerability
Spectra of limitwise monotonicity

Open questions I

I We know that for

U = {{n}⊕F : F is finite & (Wn is infinite =⇒ F∩Wn 6= ∅)}

we have hyperimunne ⊂ SpC (U) ⊆ bi-immune.
Is SpC (U) = bi-immune?

I We know that for

U = {{n} ⊕ ω � m : m 6= |Wn|}

we have hyperimmune ⊆ SpE (U) ⊂ non-zero.
SpE (U) = ...?
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Open questions II

I Let SpE (LM(S1)) ⊆ SpE (LM(S2)). Does there exists an
effective procedure getting an enumeration of LM(S1))
given any enumeration of LM(S2))?
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