Sy Friedman and Ekaterina Fokina considered Σ_1^1 equivalence relations on ω .

Examples. Let K be a nice class of structures, and consider isomorphism of the computable members of K, identified with their indices. Similarly, consider bi-embeddability.

Fokina and Friedman defined the following pre-ordering.

Definition. Let E, E' be Σ_1^1 equivalence relations on ω . Then $E \leq_{FF} E'$ if there is a computable function f s.t. for all $m, n \in \omega$, $mEn \Leftrightarrow f(m)E'f(n)$.

Let I(K) be the set of computable indices for elements of K, and let E(K) be the set of pairs (a, b) s.t. either a, b are indices for isomorphic elements of K, or else neither is an index for an element of K.

Fokina-S. Friedman-Harizanov-K-McCoy-Montalbán. If K is one of the following, then E(K) lies on top under \leq_{FF} : trees, torsion-free Abelian groups, *p*-groups.

Question. Suppose I(K) is hyperarithmetical and E(K) is not hyperarithmetical. Is it the case that for all Σ_1^1 equivalence relations E on ω , $E \leq_{FF} E(K)$?