
Lattice embeddings into
the computably enumerable ibT- and cl-degrees

Thorsten Kräling
(with Klaus Ambos-Spies, Philipp Bodewig and Wang Wei)

University of Heidelberg

February 10, 2012

Workshop ”Computability Theory”, Oberwolfach

Lattice embeddings (Definition)

Definition: A lattice is a partial order L = (L,≤) such that each
two elements a, b ∈ L have a greatest lower bound a ∧ b and a least
upper bound a ∨ b in L.

Definition: A lattice embedding of a lattice L into a partial order
P = (P,≤) is a one-to-one function f : L→ P such that

a ≤L b iff f (a) ≤P f (b)

f (a ∨L b) = f (a) ∨P f (b)

f (a ∧L b) = f (a) ∧P f (b)

for all a, b ∈ L.

Examples of embeddings in the Turing degrees I

Theorem (Lachlan 1966 / Yates 1966)

There is a minimal pair (a,b) of c.e. Turing degrees. (In particular,
there is a pair of incomparable c.e. Turing degrees with a greatest
lower bound.)

Since the c.e. Turing degrees are an upper semi-lattice, this implies:

Corollary

The diamond is embeddable into RT (preserving the least element).

•

• •

•

0

a b

a∨b

Examples of embeddings in the Turing degrees I

Theorem (Lachlan 1966 / Yates 1966)

There is a minimal pair (a,b) of c.e. Turing degrees. (In particular,
there is a pair of incomparable c.e. Turing degrees with a greatest
lower bound.)

Since the c.e. Turing degrees are an upper semi-lattice, this implies:

Corollary

The diamond is embeddable into RT (preserving the least element).

•

• •

•

0

a b

a∨b

Examples of embeddings in the Turing degrees II

Theorem (Lachlan–Thomason / Lerman, 1971)

The countable atomless Boolean algebra can be embedded into RT.

Corollary

Every finite distributive lattice is embeddable into RT.

How about nondistributive lattices?

Theorem (Lachlan 1972)

The nondistributive lattices M3 and N5 are embeddable into RT.

•

• ••

•

•

•
•

•

•

Examples of embeddings in the Turing degrees II

Theorem (Lachlan–Thomason / Lerman, 1971)

The countable atomless Boolean algebra can be embedded into RT.

Corollary

Every finite distributive lattice is embeddable into RT.

How about nondistributive lattices?

Theorem (Lachlan 1972)

The nondistributive lattices M3 and N5 are embeddable into RT.

•

• ••

•

•

•
•

•

•

Counterexamples of embeddings in the Turing degrees I

The embeddability of M5 and N5 is interesting since every
nondistributive lattice contains at least one of them as a sublattice.
On the other hand, not all finite nondistributive lattices are
embeddable into RT.

Theorem (Lachlan and Soare, 1980)

The lattice S8 cannot be embedded into RT.

•

•• •

•

• •

•

Counterexamples of embeddings in the Turing degrees I

The embeddability of M5 and N5 is interesting since every
nondistributive lattice contains at least one of them as a sublattice.
On the other hand, not all finite nondistributive lattices are
embeddable into RT.

Theorem (Lachlan and Soare, 1980)

The lattice S8 cannot be embedded into RT.

•

•• •

•

• •

•

Counterexamples of embeddings in the Turing degrees II

Theorem (Lempp and Lerman, 1997)

The following 20-element lattice cannot be embedded into RT.

ibT- and cl-reducibility

Definition (Soare / Downey, Hirschfeldt and LaForte)

A set A ⊆ N is computably Lipschitz-(cl)-reducible to a set
B ⊆ N if A is Turing-reducible to B via a reduction Φ such that for
the use function ϕ of this reduction,

(∀x)ϕ(x) ≤ x + c

for some constant c . We write A ≤cl B . If c can be chosen to be 0,
we say that A is identity-bounded Turing-(ibT-)reducible to B
(written A ≤ibT B).

Note that this is a very strong restriction of bounded Turing- (aka
weak truth-table-)reducibility, where the size of oracle questions is
bounded by some computable function. Here, this function is
required to be the identity function [plus a constant].

Definition: For r = cl, ibT, an r -degree is called c.e. if it contains a
c.e. set. Rr is the partial ordering of the c.e. r -degrees.

ibT- and cl-reducibility

Definition (Soare / Downey, Hirschfeldt and LaForte)

A set A ⊆ N is computably Lipschitz-(cl)-reducible to a set
B ⊆ N if A is Turing-reducible to B via a reduction Φ such that for
the use function ϕ of this reduction,

(∀x)ϕ(x) ≤ x + c

for some constant c . We write A ≤cl B . If c can be chosen to be 0,
we say that A is identity-bounded Turing-(ibT-)reducible to B
(written A ≤ibT B).

Note that this is a very strong restriction of bounded Turing- (aka
weak truth-table-)reducibility, where the size of oracle questions is
bounded by some computable function. Here, this function is
required to be the identity function [plus a constant].

Definition: For r = cl, ibT, an r -degree is called c.e. if it contains a
c.e. set. Rr is the partial ordering of the c.e. r -degrees.

Fundamental facts about RibT and Rcl

Let r ∈ {ibt, cl}.

Barmpalias 2005: There are no maximal elements in Rr .
(Proof for r = ibt: A noncomputable
⇒ A <ibt A− 1 = {x − 1 : x ∈ A and x > 0}.) In particular,
there are no complete c.e. r -degrees.

Barmpalias / Fan and Lu 2005: There are maximal pairs (=
pairs without common upper bound) of c.e. r -degrees. In
particular, Rr is not an upper semi-lattice.

ibT-cl-Conversion Lemma (Ambos-Spies, Ding, Fan, Merkle):
Let A,B0, . . . ,Bn(n ≥ 0) be c.e. sets such that

degibT(B0) ∨ . . . ∨ degibT(Bn) = degibT(A).

Then
degcl(B0) ∨ . . . ∨ degcl(Bn) = degcl(A).

The same holds for ∧ instead of ∨.

Fundamental facts about RibT and Rcl

Let r ∈ {ibt, cl}.

Barmpalias 2005: There are no maximal elements in Rr .
(Proof for r = ibt: A noncomputable
⇒ A <ibt A− 1 = {x − 1 : x ∈ A and x > 0}.) In particular,
there are no complete c.e. r -degrees.

Barmpalias / Fan and Lu 2005: There are maximal pairs (=
pairs without common upper bound) of c.e. r -degrees. In
particular, Rr is not an upper semi-lattice.

ibT-cl-Conversion Lemma (Ambos-Spies, Ding, Fan, Merkle):
Let A,B0, . . . ,Bn(n ≥ 0) be c.e. sets such that

degibT(B0) ∨ . . . ∨ degibT(Bn) = degibT(A).

Then
degcl(B0) ∨ . . . ∨ degcl(Bn) = degcl(A).

The same holds for ∧ instead of ∨.

Embedding distributive lattices

Theorem

For r = ibT, cl, the diamond is embeddable into Rr (preserving the
least element).

•

• •

•

0

deg(A) deg(B)

deg(A∪B)

Theorem (Ambos-Spies)

For r = ibT, cl, the countable atomless Boolean algebra can be
embedded into Rr.

Corollary

Every finite distributive lattice is embeddable into Rr.

Embedding nondistributive lattices into the c.e. ibT- and
cl-degrees

Theorem (Ambos-Spies, Bodewig, Kräling, and Yu)

For r = ibT, cl, the nondistributive lattice N5 is embeddable into
Rr (preserving the least element).

•

•
•

•

•

Embedding the N5

Requirements and how to satisfy them:

A ≤ibT B ≤ibT D and C ≤ibT D
by permitting.

B 6≤cl A
We satisfy the requirements B 6= ΦA for cl-functionals Φ with
ϕ(x) ≤ x + e by enumerating numbers x into B and
restraining A � x + e + 1. (Diagonalization)

degibT(B) ∧ degibT(C) = degibT(∅)
with the minimal pair technique.

degibT(A) ∨ degibT(C) = degibT(D)
We satisfy the requirements
A = ΦW and C = ΨW =⇒ D ≤ibT W
for all c.e. sets W and all ibT-functionals Φ, Ψ.

Embedding the S8 into RibT and Rcl

Theorem (Ambos-Spies, Bodewig, Kräling, and Yu)

Let r = ibT, cl. Every c.e. r -degree a is branching, i.e. is the
greatest lower bound of incomparable c.e. r -degrees b and c.
Moreover, it is possible to choose b and c such that b ∨ c exists.

Corollary

If the M3 is embeddable, then the S8 is embeddable into Rr .

•

• ••

•

•

•• •

•

• •

•

a=b∧c

b c

b∨c

Embedding the M3 into RibT and Rcl

Theorem (Ambos-Spies and Wang)

The nondistributive lattice M3 cannot be embedded into RibT or
Rcl preserving the least element.

Theorem (Ambos-Spies, Bodewig, Kräling, and Wang)

The M3 is embeddable into RibT and Rcl.

•

• ••

•

a

b0 b1 b2

c

Embedding the M3

Requirements and how to satisfy them:

A ≤ibT Bi ≤ibT C for i ∈ {0, 1, 2}
by permitting.

Bi 6≤cl A for i ∈ {0, 1, 2}
We satisfy the requirements B 6= ΦA for cl-functionals Φ with
ϕ(x) ≤ x + e by enumerating numbers x into B and
restraining A � x + e + 1. (Diagonalization)

degibT(Bi) ∧ degibT(Bj) = degibT(A) for i 6= j , i , j ∈ {0, 1, 2}
with the minimal pair technique relative to A.

degibT(Bi) ∨ degibT(Bj) = degibT(C) for i 6= j , i , j ∈ {0, 1, 2}
We satisfy the requirements
Bi = ΦW and Bj = ΨW =⇒ C ≤ibT W
for all c.e. sets W and all ibT-functionals Φ, Ψ.

Making the strategies work together - a naive approach

Given the basic strategies to satisfy the requirements, we need them
to work together. A naive approach to satisfy the requirement
B0 6= Φ(A) would look like this:

1 Wait until Φ(A)(x) ↓= 0 for some diagonalisation witness x ,
and enumerate x into B0.

2 For B0 ≤ibT C , enumerate some number y ≤ x into C .

3 For the join requirement degibT(C) = degibT(B1) ∨ degibT(B2),
enumerate some number z ≤ y into B1 or B2, say into B2.

4 For the meet requirement
degibT(A) = degibT(B0) ∧ degibT(B2), enumerate some
number w ≤ max(x , z) = x into A.

But this conflicts with restraining A � (x + e + 1)! Hence the
approach fails!

Making the strategies work together - a modified approach

Assume we want to satisfy B0 6= Φe(A), and we have a witness x
with [x + 1, x + e + 1] ⊆W for a certain c.e. set W .

1 Wait until Φ(A)(x) ↓= 0. Then enumerate x into B0.

2 Enumerate x into C to make B0 ≤ibT C .

3 To make C ≤ibT W , enumerate x + e + 1 into B2 .

4 To make degibT(A) = degibT(B0) ∧ degibT(B2), enumerate
x + e + 1 into A and B1 at the same time.

5 W has to react by the enumeration of some number
y ≤ x + e + 1, hence y ≤ x .

A

B0

B1

B2

C

W ••••••••
x + e + 1

Making the strategies work together - a modified approach

Assume we want to satisfy B0 6= Φe(A), and we have a witness x
with [x + 1, x + e + 1] ⊆W for a certain c.e. set W .

1 Wait until Φ(A)(x) ↓= 0. Then enumerate x into B0.

2 Enumerate x into C to make B0 ≤ibT C .

3 To make C ≤ibT W , enumerate x + e + 1 into B2 .

4 To make degibT(A) = degibT(B0) ∧ degibT(B2), enumerate
x + e + 1 into A and B1 at the same time.

5 W has to react by the enumeration of some number
y ≤ x + e + 1, hence y ≤ x .

A

B0

B1

B2

C

W •
x + e + 1

•
x

•••••••

Making the strategies work together - a modified approach

Assume we want to satisfy B0 6= Φe(A), and we have a witness x
with [x + 1, x + e + 1] ⊆W for a certain c.e. set W .

1 Wait until Φ(A)(x) ↓= 0. Then enumerate x into B0.

2 Enumerate x into C to make B0 ≤ibT C .

3 To make C ≤ibT W , enumerate x + e + 1 into B2 .

4 To make degibT(A) = degibT(B0) ∧ degibT(B2), enumerate
x + e + 1 into A and B1 at the same time.

5 W has to react by the enumeration of some number
y ≤ x + e + 1, hence y ≤ x .

A

B0

B1

B2

C

W •
x + e + 1

•
x

•

•••••••

Making the strategies work together - a modified approach

Assume we want to satisfy B0 6= Φe(A), and we have a witness x
with [x + 1, x + e + 1] ⊆W for a certain c.e. set W .

1 Wait until Φ(A)(x) ↓= 0. Then enumerate x into B0.

2 Enumerate x into C to make B0 ≤ibT C .

3 To make C ≤ibT W , enumerate x + e + 1 into B2 .

4 To make degibT(A) = degibT(B0) ∧ degibT(B2), enumerate
x + e + 1 into A and B1 at the same time.

5 W has to react by the enumeration of some number
y ≤ x + e + 1, hence y ≤ x .

A

B0

B1

B2

C

W •
x + e + 1

•
x

•
•

•••••••

Making the strategies work together - a modified approach

Assume we want to satisfy B0 6= Φe(A), and we have a witness x
with [x + 1, x + e + 1] ⊆W for a certain c.e. set W .

1 Wait until Φ(A)(x) ↓= 0. Then enumerate x into B0.

2 Enumerate x into C to make B0 ≤ibT C .

3 To make C ≤ibT W , enumerate x + e + 1 into B2 .

4 To make degibT(A) = degibT(B0) ∧ degibT(B2), enumerate
x + e + 1 into A and B1 at the same time.

5 W has to react by the enumeration of some number
y ≤ x + e + 1, hence y ≤ x .

A

B0

B1

B2

C

W •

•
x

•
•

•

•

•••••••

Making the strategies work together - a modified approach

Assume we want to satisfy B0 6= Φe(A), and we have a witness x
with [x + 1, x + e + 1] ⊆W for a certain c.e. set W .

1 Wait until Φ(A)(x) ↓= 0. Then enumerate x into B0.

2 Enumerate x into C to make B0 ≤ibT C .

3 To make C ≤ibT W , enumerate x + e + 1 into B2 .

4 To make degibT(A) = degibT(B0) ∧ degibT(B2), enumerate
x + e + 1 into A and B1 at the same time.

5 W has to react by the enumeration of some number
y ≤ x + e + 1, hence y ≤ x .

A

B0

B1

B2

C

W •
y

•
x

•
•

•

•

•

•••••••

Safe positions

To make this work, the diagonalisation requirements (for Φe) have
to choose their witnesses x in such a way that the interval
[x + 1, x + e + 1] is contained in W when the diagonalisation starts.

Definition

An interval I is safe for W at stage s if I ⊆W and
I ∩ (A ∪ B0 ∪ B1 ∪ B2) = ∅ at stage s.

How can we create safe intervals?

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

J

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

Creating safe intervals for one W

If Φ(W) = B1 and Ψ(W) = B2, we can create a safe interval as
follows. At the beginning, we reserve an interval J that contains no
elements from A, B0, B1, B2 or C . Enumerate the elements from J
from right to left, each element first into B1, then into B2 and wait
for W to respond by a smaller or equal enumeration. Also care for
permitting by C .

Due to lack of space, if J is long enough, we get a safe subinterval
I of the required length.

A

B0

B1

B2

C

W

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•

•

•
•

•

I

Creating safe intervals for two W

If for example Φ(W) = B0 and Ψ(W) = B2, and also Φ′(W ′) = B1

and Ψ′(W ′) = B2, then we need to create intervals which are safe
for both W and W ′.

1 Again start with a very long interval J which contains no
elements from A, B0, B1, B2 and C .

2 Create a long subinterval IW which is safe for W .

A

B0

B1

B2

C

W

W ′

J

Creating safe intervals for two W

If for example Φ(W) = B0 and Ψ(W) = B2, and also Φ′(W ′) = B1

and Ψ′(W ′) = B2, then we need to create intervals which are safe
for both W and W ′.

1 Again start with a very long interval J which contains no
elements from A, B0, B1, B2 and C .

2 Create a long subinterval IW which is safe for W .

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

••

•
•
•

•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

••

•
•
•

•

•
•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

3 As before, create a subinterval IW ,W ′ ⊆ J below IW which is
safe for W ′ by enumerating it into B1 and B2 alternatingly.
Simultaneously, try to make it safe for W by enumerating IW
into B0 and B2.
Since we enumerate elements into B0 and B2 or B1 and B2 at
the same time, we also have to enumerate elements from IW in
A (and hence also in B2 for permitting) to satisfy degibT(A) =
degibT(B0) ∧ degibT(B2) = degibT(B1) ∧ degibT(B2).

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

IW ,W ′

It is possible that the responses of W contain gaps. Then we don’t
get a safe interval which is long enough.
In this case we try again to create a new IW below the last enumer-
ation into C . W can never use elements from the gap to respond to
our enumerations.
If we do this enough times, W has no space left to produce gaps.
But we need to start with a VERY long interval J !

A

B0

B1

B2

C

W

W ′

• • • • • • • •

IW

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

•

•

•
•
•

•

•
•

•
•

•
•
•

•

•
•

It is possible that the responses of W contain gaps. Then we don’t
get a safe interval which is long enough.
In this case we try again to create a new IW below the last enumer-
ation into C . W can never use elements from the gap to respond to
our enumerations.
If we do this enough times, W has no space left to produce gaps.
But we need to start with a VERY long interval J !

I(1)W
I(1)W ,W ′I(2)W

I(2)W ,W ′· · ·

It is possible that the responses of W contain gaps. Then we don’t
get a safe interval which is long enough.
In this case we try again to create a new IW below the last enumer-
ation into C . W can never use elements from the gap to respond to
our enumerations.
If we do this enough times, W has no space left to produce gaps.
But we need to start with a VERY long interval J !

I(1)W
I(1)W ,W ′I(2)W

I(2)W ,W ′· · ·

The case which respects finitely many sets W0, . . . ,Wn needs even
more space (|J | ≥ 5, 000, 000 for n = 4).

Open questions

Are all finite lattices embeddable into RibT and Rcl or is there
a counterexample?

Which lattices can be embedded into RibT or Rcl preserving
the least element?

Thank you for your attention!

