Lattice embeddings into the computably enumerable $ibT\mathchar`-$ and $cl\mathchar`-$ degrees

Thorsten Kräling (with Klaus Ambos-Spies, Philipp Bodewig and Wang Wei)

University of Heidelberg

February 10, 2012 Workshop "Computability Theory", Oberwolfach

Definition: A *lattice* is a partial order $\mathcal{L} = (L, \leq)$ such that each two elements $a, b \in L$ have a greatest lower bound $a \wedge b$ and a least upper bound $a \vee b$ in L.

Definition: A *lattice embedding* of a lattice \mathcal{L} into a partial order $\mathcal{P} = (P, \leq)$ is a one-to-one function $f : L \to P$ such that

■
$$a \leq_{\mathcal{L}} b$$
 iff $f(a) \leq_{\mathcal{P}} f(b)$
■ $f(a \lor_{\mathcal{L}} b) = f(a) \lor_{\mathcal{P}} f(b)$
■ $f(a \land_{\mathcal{L}} b) = f(a) \land_{\mathcal{P}} f(b)$
for all $a, b \in \mathcal{L}$.

Examples of embeddings in the Turing degrees I

Theorem (Lachlan 1966 / Yates 1966)

There is a minimal pair (\mathbf{a}, \mathbf{b}) of c.e. Turing degrees. (In particular, there is a pair of incomparable c.e. Turing degrees with a greatest lower bound.)

(日)、(型)、(E)、(E)、(E)、(O)()

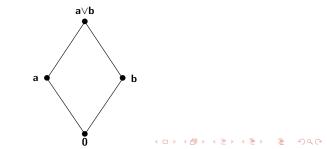
Examples of embeddings in the Turing degrees I

Theorem (Lachlan 1966 / Yates 1966)

There is a minimal pair (\mathbf{a}, \mathbf{b}) of c.e. Turing degrees. (In particular, there is a pair of incomparable c.e. Turing degrees with a greatest lower bound.)

Since the c.e. Turing degrees are an upper semi-lattice, this implies: Corollary

The diamond is embeddable into \mathcal{R}_{T} (preserving the least element).



Examples of embeddings in the Turing degrees II

Theorem (Lachlan–Thomason / Lerman, 1971)

The countable atomless Boolean algebra can be embedded into \mathcal{R}_{T} .

(日)、(型)、(E)、(E)、(E)、(O)()

Corollary

Every finite distributive lattice is embeddable into \mathcal{R}_{T} .

How about nondistributive lattices?

Examples of embeddings in the Turing degrees II

Theorem (Lachlan–Thomason / Lerman, 1971)

The countable atomless Boolean algebra can be embedded into \mathcal{R}_{T} .

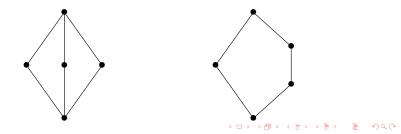
Corollary

Every finite distributive lattice is embeddable into \mathcal{R}_{T} .

How about nondistributive lattices?

Theorem (Lachlan 1972)

The nondistributive lattices M_3 and N_5 are embeddable into \mathcal{R}_{T} .



Counterexamples of embeddings in the Turing degrees I

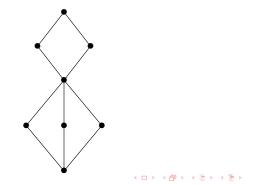
The embeddability of M_5 and N_5 is interesting since every nondistributive lattice contains at least one of them as a sublattice. On the other hand, not all finite nondistributive lattices are embeddable into $\mathcal{R}_{\rm T}$.

Counterexamples of embeddings in the Turing degrees I

The embeddability of M_5 and N_5 is interesting since every nondistributive lattice contains at least one of them as a sublattice. On the other hand, not all finite nondistributive lattices are embeddable into $\mathcal{R}_{\rm T}$.

Theorem (Lachlan and Soare, 1980)

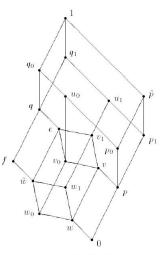
The lattice S_8 cannot be embedded into \mathcal{R}_{T} .



Counterexamples of embeddings in the Turing degrees II

Theorem (Lempp and Lerman, 1997)

The following 20-element lattice cannot be embedded into $\mathcal{R}_{\mathrm{T}}.$



Lattice L_{20}

・ 伊 ト ・ ヨ ト ・ ヨ ト

$ibT\mathchar`-$ and $cl\mathchar`-reducibility$

Definition (Soare / Downey, Hirschfeldt and LaForte)

A set $A \subseteq \mathbb{N}$ is **computably Lipschitz-(**cl**)-reducible** to a set $B \subseteq \mathbb{N}$ if A is Turing-reducible to B via a reduction Φ such that for the use function φ of this reduction,

 $(\forall x)\varphi(x) \leq x + c$

for some constant *c*. We write $A \leq_{cl} B$. If *c* can be chosen to be 0, we say that *A* is **identity-bounded Turing-(***ib*T**-)reducible** to *B* (written $A \leq_{ibT} B$).

$ibT\mathchar`-$ and $cl\mathchar`-reducibility$

Definition (Soare / Downey, Hirschfeldt and LaForte)

A set $A \subseteq \mathbb{N}$ is **computably Lipschitz-(**cl**)-reducible** to a set $B \subseteq \mathbb{N}$ if A is Turing-reducible to B via a reduction Φ such that for the use function φ of this reduction,

 $(\forall x)\varphi(x) \leq x + c$

for some constant *c*. We write $A \leq_{cl} B$. If *c* can be chosen to be 0, we say that *A* is **identity-bounded Turing-(***ib*T**-)reducible** to *B* (written $A \leq_{ibT} B$).

Note that this is a very strong restriction of bounded Turing- (aka weak truth-table-)reducibility, where the size of oracle questions is bounded by some computable function. Here, this function is required to be the identity function [plus a constant].

Definition: For r = cl, ibT, an *r*-degree is called c.e. if it contains a c.e. set. \mathcal{R}_r is the partial ordering of the c.e. *r*-degrees.

Fundamental facts about \mathcal{R}_{ibT} and \mathcal{R}_{cl}

Let $r \in {ibt, cl}$.

Barmpalias 2005: There are no maximal elements in *R_r*. (Proof for *r* = ibt: *A* noncomputable
 ⇒ *A* <_{ibt} *A* − 1 = {*x* − 1 : *x* ∈ *A* and *x* > 0}.) In particular, there are no complete c.e. *r*-degrees.

(日)、(型)、(E)、(E)、(E)、(O)()

Fundamental facts about \mathcal{R}_{ibT} and \mathcal{R}_{cl}

Let $r \in {ibt, cl}$.

- Barmpalias 2005: There are no maximal elements in *R_r*. (Proof for *r* = ibt: *A* noncomputable
 ⇒ *A* <_{ibt} *A* − 1 = {*x* − 1 : *x* ∈ *A* and *x* > 0}.) In particular, there are no complete c.e. *r*-degrees.
- Barmpalias / Fan and Lu 2005: There are maximal pairs (= pairs without common upper bound) of c.e. *r*-degrees. In particular, *R_r* is not an upper semi-lattice.
- ibT-cl-Conversion Lemma (Ambos-Spies, Ding, Fan, Merkle): Let A, B₀,..., B_n(n ≥ 0) be c.e. sets such that

$$deg_{ibT}(B_0) \lor \ldots \lor deg_{ibT}(B_n) = deg_{ibT}(A).$$

Then

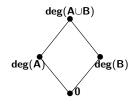
$$deg_{cl}(B_0) \vee \ldots \vee deg_{cl}(B_n) = deg_{cl}(A).$$

The same holds for \land instead of \lor .

Embedding distributive lattices

Theorem

For r = ibT, cl, the diamond is embeddable into \mathcal{R}_r (preserving the least element).



Theorem (Ambos-Spies)

For r = ibT, cl, the countable atomless Boolean algebra can be embedded into \mathcal{R}_r .

- 3

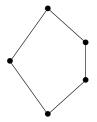
Corollary

Every finite distributive lattice is embeddable into \mathcal{R}_r .

Embedding nondistributive lattices into the c.e. $\rm ibT\text{-}$ and $\rm cl\text{-}degrees$

Theorem (Ambos-Spies, Bodewig, Kräling, and Yu)

For r = ibT, cl, the nondistributive lattice N_5 is embeddable into \mathcal{R}_r (preserving the least element).



Embedding the N_5

Requirements and how to satisfy them:

• $A \leq_{ibT} B \leq_{ibT} D$ and $C \leq_{ibT} D$ by permitting.

 $\blacksquare B \not\leq_{\rm cl} A$

We satisfy the requirements $B \neq \Phi^A$ for cl-functionals Φ with $\varphi(x) \leq x + e$ by enumerating numbers x into B and restraining $A \upharpoonright x + e + 1$. (Diagonalization)

 deg_{ibT}(B) ∧ deg_{ibT}(C) = deg_{ibT}(Ø) with the minimal pair technique.

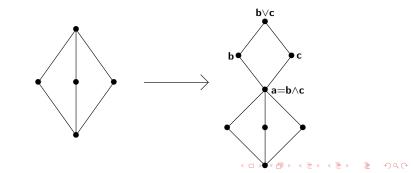
• $deg_{ibT}(A) \lor deg_{ibT}(C) = deg_{ibT}(D)$ We satisfy the requirements $A = \Phi^{W}$ and $C = \Psi^{W} \implies D \leq_{ibT} W$ for all c.e. sets W and all ibT-functionals Φ , Ψ .

Embedding the \textit{S}_8 into $\mathcal{R}_{\rm ibT}$ and $\mathcal{R}_{\rm cl}$

Theorem (Ambos-Spies, Bodewig, Kräling, and Yu)

Let r = ibT, cl. Every c.e. r-degree **a** is branching, i.e. is the greatest lower bound of incomparable c.e. r-degrees **b** and **c**. Moreover, it is possible to choose **b** and **c** such that **b** \lor **c** exists. Corollary

If the M_3 is embeddable, then the S_8 is embeddable into \mathcal{R}_r .



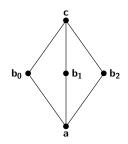
Embedding the M_3 into $\mathcal{R}_{\mathrm{ibT}}$ and $\mathcal{R}_{\mathrm{cl}}$

Theorem (Ambos-Spies and Wang)

The nondistributive lattice M_3 cannot be embedded into $\mathcal{R}_{\rm ibT}$ or $\mathcal{R}_{\rm cl}$ preserving the least element.

Theorem (Ambos-Spies, Bodewig, Kräling, and Wang)

The M_3 is embeddable into $\mathcal{R}_{\mathrm{ibT}}$ and $\mathcal{R}_{\mathrm{cl}}$.



イロン 不得と 不良と 不良とう

Embedding the M_3

Requirements and how to satisfy them:

- $A \leq_{ibT} B_i \leq_{ibT} C$ for $i \in \{0, 1, 2\}$ by permitting.
- $\blacksquare B_i \not\leq_{cl} A \text{ for } i \in \{0, 1, 2\}$

We satisfy the requirements $B \neq \Phi^A$ for cl-functionals Φ with $\varphi(x) \leq x + e$ by enumerating numbers x into B and restraining $A \upharpoonright x + e + 1$. (Diagonalization)

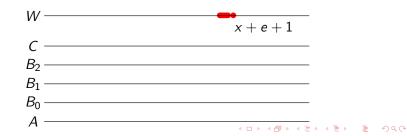
- $deg_{ibT}(B_i) \land deg_{ibT}(B_j) = deg_{ibT}(A)$ for $i \neq j, i, j \in \{0, 1, 2\}$ with the minimal pair technique relative to A.
- $deg_{ibT}(B_i) \lor deg_{ibT}(B_j) = deg_{ibT}(C)$ for $i \neq j, i, j \in \{0, 1, 2\}$ We satisfy the requirements $B_i = \Phi^W$ and $B_j = \Psi^W \implies C \leq_{ibT} W$ for all c.e. sets W and all ibT-functionals Φ, Ψ .

Given the basic strategies to satisfy the requirements, we need them to work together. A naive approach to satisfy the requirement $B_0 \neq \Phi(A)$ would look like this:

- Wait until $\Phi(A)(x) \downarrow = 0$ for some diagonalisation witness x, and enumerate x into B_0 .
- **2** For $B_0 \leq_{ibT} C$, enumerate some number $y \leq x$ into C.
- **3** For the join requirement $deg_{ibT}(C) = deg_{ibT}(B_1) \lor deg_{ibT}(B_2)$, enumerate some number $z \le y$ into B_1 or B_2 , say into B_2 .

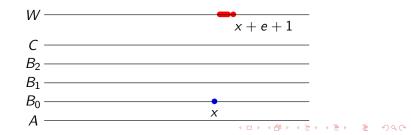
4 For the meet requirement $deg_{ibT}(A) = deg_{ibT}(B_0) \wedge deg_{ibT}(B_2)$, enumerate some number $w \leq \max(x, z) = x$ into A.

But this conflicts with restraining $A \upharpoonright (x + e + 1)!$ Hence the approach fails!

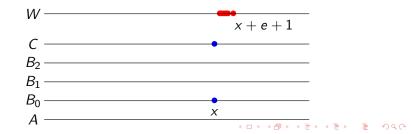


Assume we want to satisfy $B_0 \neq \Phi_e(A)$, and we have a witness x with $[x + 1, x + e + 1] \subseteq W$ for a certain c.e. set W.

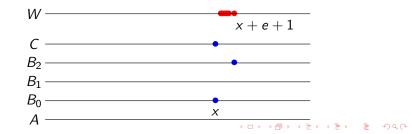
1 Wait until $\Phi(A)(x) \downarrow = 0$. Then enumerate x into B_0 .



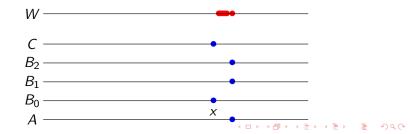
- **1** Wait until $\Phi(A)(x) \downarrow = 0$. Then enumerate x into B_0 .
- **2** Enumerate x into C to make $B_0 \leq_{ibT} C$.



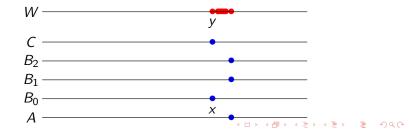
- **1** Wait until $\Phi(A)(x) \downarrow = 0$. Then enumerate x into B_0 .
- **2** Enumerate x into C to make $B_0 \leq_{ibT} C$.
- 3 To make $C \leq_{ibT} W$, enumerate x + e + 1 into B_2 .



- **1** Wait until $\Phi(A)(x) \downarrow = 0$. Then enumerate x into B_0 .
- **2** Enumerate x into C to make $B_0 \leq_{ibT} C$.
- 3 To make $C \leq_{\mathrm{ibT}} W$, enumerate x + e + 1 into B_2 .
- 4 To make $deg_{ibT}(A) = deg_{ibT}(B_0) \wedge deg_{ibT}(B_2)$, enumerate x + e + 1 into A and B_1 at the same time.



- **1** Wait until $\Phi(A)(x) \downarrow = 0$. Then enumerate x into B_0 .
- **2** Enumerate x into C to make $B_0 \leq_{ibT} C$.
- 3 To make $C \leq_{ibT} W$, enumerate x + e + 1 into B_2 .
- 4 To make $deg_{ibT}(A) = deg_{ibT}(B_0) \wedge deg_{ibT}(B_2)$, enumerate x + e + 1 into A and B_1 at the same time.
- 5 W has to react by the enumeration of some number $y \le x + e + 1$, hence $y \le x$.



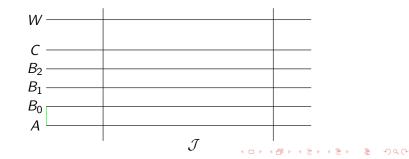
To make this work, the diagonalisation requirements (for Φ_e) have to choose their witnesses x in such a way that the interval [x + 1, x + e + 1] is contained in W when the diagonalisation starts.

Definition

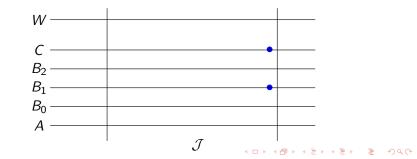
An interval \mathcal{I} is **safe for** W at stage s if $\mathcal{I} \subseteq W$ and $\mathcal{I} \cap (A \cup B_0 \cup B_1 \cup B_2) = \emptyset$ at stage s.

How can we create safe intervals?

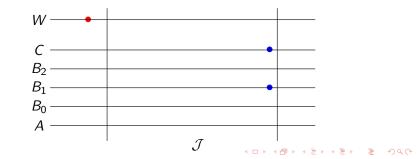
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



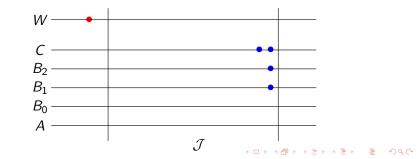
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



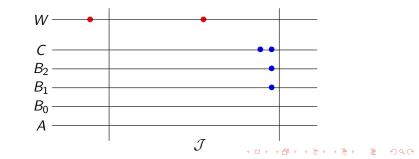
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



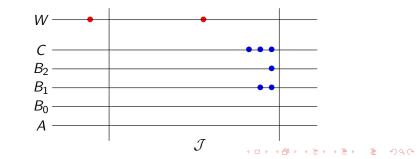
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



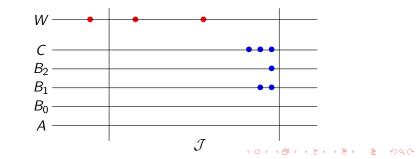
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



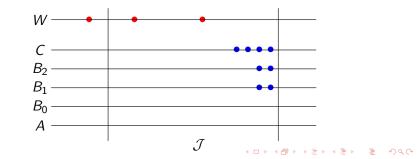
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



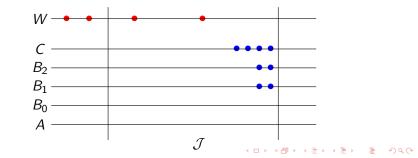
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.

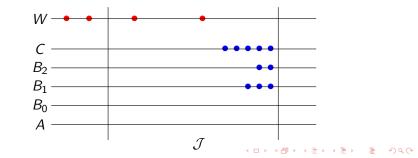


If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.

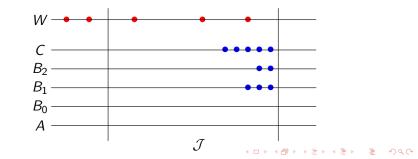


Creating safe intervals for one W

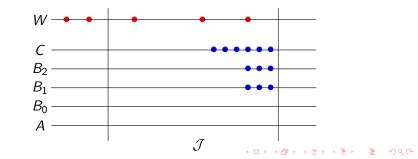
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



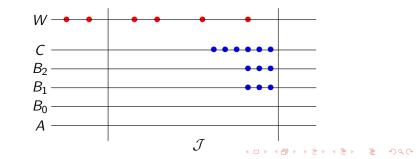
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



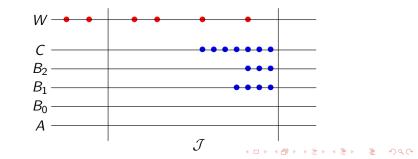
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



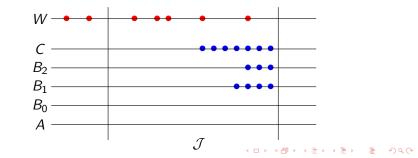
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



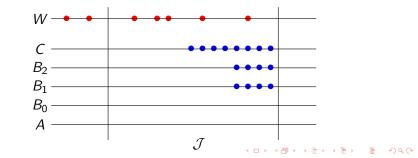
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



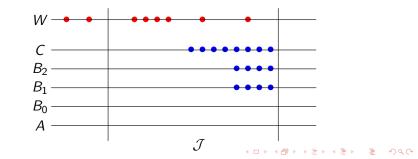
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



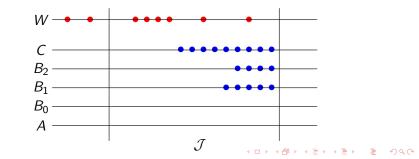
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



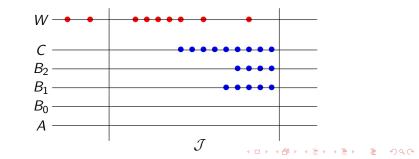
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



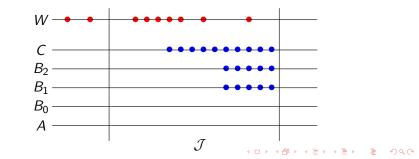
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



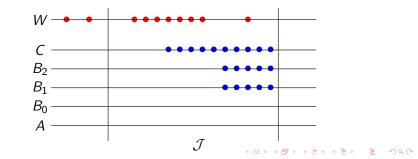
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



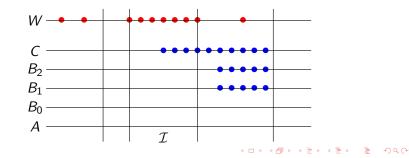
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



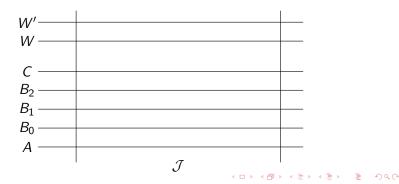
If $\Phi(W) = B_1$ and $\Psi(W) = B_2$, we can create a safe interval as follows. At the beginning, we reserve an interval \mathcal{J} that contains no elements from A, B_0 , B_1 , B_2 or C. Enumerate the elements from \mathcal{J} from right to left, each element first into B_1 , then into B_2 and wait for W to respond by a smaller or equal enumeration. Also care for permitting by C.



Creating safe intervals for two W

If for example $\Phi(W) = B_0$ and $\Psi(W) = B_2$, and also $\Phi'(W') = B_1$ and $\Psi'(W') = B_2$, then we need to create intervals which are safe for both W and W'.

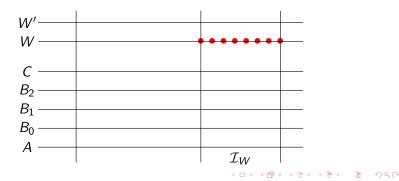
- Again start with a very long interval \mathcal{J} which contains no elements from A, B_0 , B_1 , B_2 and C.
- **2** Create a long subinterval \mathcal{I}_W which is safe for W.



Creating safe intervals for two W

If for example $\Phi(W) = B_0$ and $\Psi(W) = B_2$, and also $\Phi'(W') = B_1$ and $\Psi'(W') = B_2$, then we need to create intervals which are safe for both W and W'.

- Again start with a very long interval \mathcal{J} which contains no elements from A, B_0 , B_1 , B_2 and C.
- **2** Create a long subinterval \mathcal{I}_W which is safe for W.



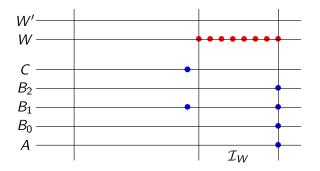
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



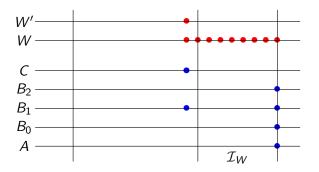
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



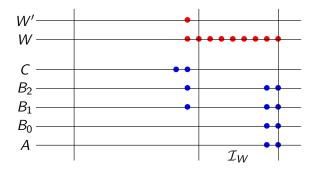
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



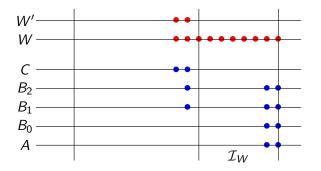
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



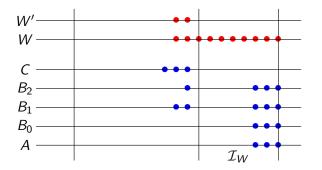
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



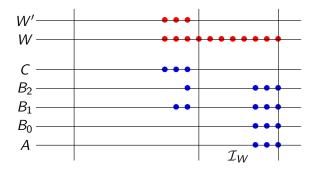
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



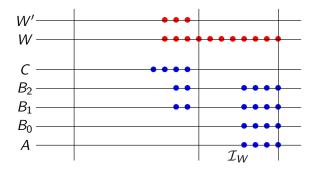
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



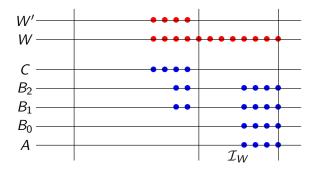
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



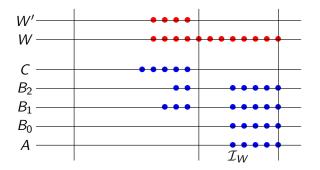
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



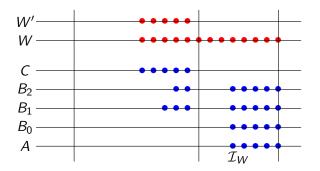
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



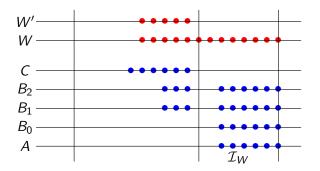
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



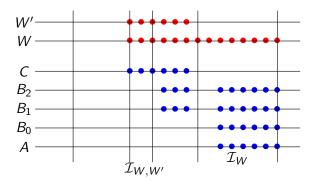
3

- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



3

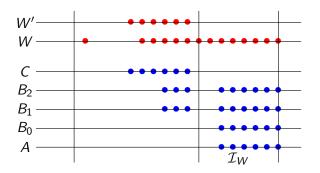
- Simultaneously, try to make it safe for W by enumerating I_W into B₀ and B₂.
- Since we enumerate elements into B_0 and B_2 or B_1 and B_2 at the same time, we also have to enumerate elements from \mathcal{I}_W in A (and hence also in B_2 for permitting) to satisfy $deg_{ibT}(A) =$ $deg_{ibT}(B_0) \wedge deg_{ibT}(B_2) = deg_{ibT}(B_1) \wedge deg_{ibT}(B_2)$.



It is possible that the responses of W contain gaps. Then we don't get a safe interval which is long enough.

In this case we try again to create a new \mathcal{I}_W below the last enumeration into *C*. *W* can never use elements from the gap to respond to our enumerations.

If we do this enough times, W has no space left to produce gaps. But we need to start with a VERY long interval \mathcal{J} !



イロト 不得 トイヨト イヨト ヨー ろくで

It is possible that the responses of W contain gaps. Then we don't get a safe interval which is long enough.

In this case we try again to create a new \mathcal{I}_W below the last enumeration into *C*. *W* can never use elements from the gap to respond to our enumerations.

If we do this enough times, W has no space left to produce gaps. But we need to start with a VERY long interval \mathcal{J} !

It is possible that the responses of W contain gaps. Then we don't get a safe interval which is long enough.

In this case we try again to create a new \mathcal{I}_W below the last enumeration into *C*. *W* can never use elements from the gap to respond to our enumerations.

If we do this enough times, W has no space left to produce gaps. But we need to start with a VERY long interval \mathcal{J} !

The case which respects finitely many sets W_0, \ldots, W_n needs even more space ($|\mathcal{J}| \ge 5,000,000$ for n = 4).

- Are all finite lattices embeddable into \mathcal{R}_{ibT} and \mathcal{R}_{cl} or is there a counterexample?
- Which lattices can be embedded into \mathcal{R}_{ibT} or \mathcal{R}_{cl} preserving the least element?

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Thank you for your attention!

<□ > < @ > < E > < E > E - のQ @