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KOLMOGOROV’S 0-1 LAW

Theorem. Every measurable tailset is of measure 0 or 1.

Very simple proof — basically if [W] is an open covering
of P, with u([W]) = a, then let W* = {o x 7| 0,7 € W}.
We have u([W*]) = a?, and since P is a tailset [W*] is still
an open covering of P.



MARTIN-LOF RANDOMNESS

A set B C w is Martin-Lof random if it does not belong
to any effectively null set. A set P C 2% is effectively
null if there is an algorithm which, given any rational € > 0
as input, enumerates a set of finite binary strings W, such
that [W¢] is an open covering of P of measure < e.



MARTIN-LOF RANDOMNESS

A set B C w is Martin-Lof random if it does not belong
to any effectively null set. A set P C 2% is effectively
null if there is an algorithm which, given any rational € > 0
as input, enumerates a set of finite binary strings W, such
that [W¢] is an open covering of P of measure < e.

So now the crucial observation is just this: if a set is null,
then it is effectively null relative to some oracle. So if a
set 1s of measure 1, then there is some level of randomness
which suffices to ensure that you belong to the set.



MEASURABLE SETS

In the below, ‘definable’ means definable as a subset of
the Turing degrees in the language for the structure (i.e.,
the language of partial orders).

Observation. Whether or not all definable sets of Tur-
ing degrees are measureable is independent of ZFC.

In other words, whether or not we can take any definable
property of the Turing degrees, and force a degree to satisfy
it, or else force a degree to satisfy its negation, simply by

insisting that it be sufficiently random, this is independent
of ZFC.















GENERIC SETS

The role that was played by randomness in the con-
text of measure is now played by genericity (where B is
1-generic relative to A if, for every W which is c.e. in A,
do C Bl(c e W) Vv (V7 Do)[T & W]]).

If a set is comeager then there is some level of genericity
which suffices to ensure membership.



MEAGER AND COMEAGER SETS

Observation. Whether or not all definable sets of degrees
are either meager or comeager is independent of ZFC.

In other words, whether or not we can take any definable
property of the Turing degrees and force a degree to satisfy
it, or else force a degree to satisfy its negation, simply by

requiring that it be sufficiently generic, this is independent
of ZFC.



TO BE CONSIDERED...

Minimality An heuristic principle
Bounding a minimal  The cupping property
The join property Being a minimal cover

The framework Being the top of a diamond

The meet and complementation properties



MINIMAL DEGREES

Theorem [Sacks]. The minimal degrees are of measure 0.

In fact it is easy to see that no 1-random set A is of minimal
degree. Writing A = B @ C (so B gives the even bits of A and C
gives the odd bits) we see that B and C must be Turing incompa-
rable.

Theorem [Jockusch|. The minimal degrees are
meager. No 1-generic is of minimal degree.




DEGREES WHICH BOUND MINIMALS.
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Background

Theorem [Jockusch]. Every generalized high degree bounds a min-
imal degree.

Theorem [Ellison,L|. Every generalized high degree is the join of
two minimal degrees.
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Theorem [Paris]. The measure of those degrees
which bound a minimal degree is O.




DEGREES WHICH BOUND MINIMALS.

Theorem [Kurtz]. For almost all degrees a, if 0 < b < a,
then b bounds a 1-generic.

Theorem [BDL]. If a is 2-random and 0 < b < a, then b
bounds a 1-generic.

Corollary [BDL]. If a is 2-random then it does not bound
any minimal degrees.



DEGREES WHICH BOUND MINIMALS.

A set is weakly 2-random if it does not belong to any
null II9 class.

A Demuth test is a sequence of c.e. sets {V,, }snecw such
that p([Vin]) < 2™ and there is an w-c.e. function f such
that Vi, = Wem) (i.e. Vi, is the f(m)th c.e. set). A set
A fails the test if there exist infinitely many m such that
A € [V,,]. A set is Demuth random if it doesn’t fail any
Demuth test.



DEGREES WHICH BOUND MINIMALS.

There are Demuth randoms which are AY. By Kugera’s
technique of FPF permitting, any FPF AY degree bounds
a non-zero c.e. degree. Yates showed that any non-zero c.e.
degree bounds a minimal. So there are Demuth randoms
which bound minimal degrees.

Theorem [BDL|. There are weakly 2-randoms which are
generalized high.

Corollary. There are weakly 2-randoms which bound min-
imal degrees.



DEGREES WHICH BOUND MINIMALS.

Theorem [Martin|. If a meager set of degrees does not
contain 0 and is downward closed amongst the non-zero
degrees, then its upward closure is still meager.

Corollary. The degrees which bound minimals form a

meager set.

Theorem |[Yates, Jockusch|. 2-generic degrees
do not bound minimals.

Theorem [Chong and Downey, also Kumabe].
There are 1-generics which bound a minimal degree.




THE JOIN PROPERTY

We say a satisfies the join property if, for all non-zero b < a,
there exists ¢ < a with bV ¢ = a.
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THE JOIN PROPERTY
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Background

Theorem [Downey, Greenberg, L, Montalbdn|. All non-GLy de-
grees satisfy the join property.
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Theorem [B,L|. The measure of the degrees which satisfy the
join property is 1. All 2-random degrees satisfy the join property.

Theorem [L]. There are 1-random degrees which do not satisfy
the join property.



THE JOIN PROPERTY

The fact that there are 1-randoms which fail to satisfy
join follows from the fact [L| that all low FPF degrees fail
to satisfy join. Actually, the same reasoning shows that
there are Demuth randoms which fail to satisfy join (since

there are Demuth randoms which are A and all Demuth
randoms are GL1).

Question. Are there weakly 2-random degrees which do
not satisfy join?

Theorem [BDL]. Every degree below a 2-random satis-
fies join.



THE JOIN PROPERTY

Theorem [Jockusch]. The degrees which satisfy the join

property are comeager. All 2-generics satisfy the join prop-
erty.

In fact, what Jockusch showed is that all 2-generics sat-
isfy the cupping property. Since Martin showed that if a is
n-generic and 0 < b < a then b bounds an n-generic, and
since the degrees which satisfy the cupping property are
upward closed, this means that all non-zero degrees below
a 2-generic satisfy cupping.

Theorem [BDL]. All 1-generic degrees satisfy the join
property.



AN HEURISTIC PRINCIPLE

Any natural definable property satisfied by all suffi-
ciently random /generic degrees is likely to be satisfied by
all non-zero degrees below all sufficiently random/generic
degrees.

The reason for believing this is firstly just that it holds
for all the properties we have considered so far (as far as
the results show). Secondly, according to our frameworks
results of the first kind can be translated into results of the
second.



THE FRAMEWORK

The strategy for showing that all sufficiently random
sets X satisfy a certain degree-theoretic property is as fol-
lows:

(a) Translate the property into a countable sequence of
requirements {R.}ec, referring to an unspecified
set X.

(b) Devise an ‘atomic’ strategy which takes a number
e and a string 7 as inputs and satisfies R, for a
certain proportion of extensions X of 7, where this
proportion depends on e and not on 7.

(c) Assemble a construction from the atomic strategies
in a standard way.



EXAMPLE: BOUNDING A 1-GENERIC

(a) Re : In [®% [,€ W, V Vo € W,, &% |,Z o].
(b)
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THE FRAMEWORK

The basic rules according to which markers are placed
on strings and removed from them are as follows:

(i) At most one marker sits on any string at any given
stage.
(ii) If 7 C 7’ and at some stage an e-marker sits on 7’
and a d-marker sits on 7, then d < e.
(iii) If a marker is removed from 7 at some stage then
any marker that sits on any extension of 7 is also
removed.



THE FRAMEWORK

The outcome of the construction with respect to a par-
ticular real X will be reflected by the permanent markers
that are placed on initial segments of X. In particular, one
of the following outcomes will occur:

(1) For every e € w there is a permanent e-marker
placed on some initial segment of X.

(2) There exists some e € w such that, for each d < e, a
permanent d-marker is placed on an initial segment
of X, and such that infinitely many permanent e-
markers are placed on initial segments of X.

(3) There are only finitely many permanent markers
placed on initial segments of X.



THE CUPPING PROPERTY

A degree a satisfies the cupping property if, for all b > a,
there exists ¢ < b with a V ¢ = b.
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THE CUPPING PROPERTY
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Background

Theorem [Downey, Jockusch, Stobb|. All a.n.r. degrees
satisfy the cupping property.
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Theorem [B,L] The measure of the degrees which satisfy
the cupping property is 0. In fact, all 2-random degrees
have a strong minimal cover.

We say b is a strong minimal cover for a if the degrees
strictly below b are precisely the degrees below and includ-

ing a.



THE CUPPING PROPERTY

Theorem [B,D,L] All degrees below any 2-random degree
have a strong minimal cover.

Note that no degree below a 2-random #s a strong min-
imal cover.



THE CUPPING PROPERTY

Theorem [Jockusch]. Any non-zero degree below a 2-generic
satisfies cupping.

Theorem [Kumabe|. There is a 1-generic with a strong
minimal cover.



BEING A MINIMAL COVER
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Background

The most famous result along these lines is the old result of

Jockusch:
Theorem [Jockusch|. There is a cone of minimal covers.
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Theorem [Kumabe]. For n > 2, every n-generic is a minimal cover
of an n-generic.

Question. Is every 1-generic a minimal cover?

Question. What is the measure of the degrees which are a minimal
cover?



BEING THE TOP OF A DIAMOND

We say that a is the top of a diamond if there exist b
and c below a which are a minimal pair and join to a.

a é
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Theorem [B,D,L| Every non-zero degree below a 2-random
is the top of a diamond.



THE COMPLEMENTATION PROPERTY

We say a satisfies the complementation property if, for all
non-zero b < a, there exists ¢ < a with bvVe=a and bA c=0.
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THE COMPLEMENTATION PROPERTY

Theorem

Theorem

Posner|. 0’ satisfies the complementation property.

(Greenberg, Montalban, Shore|. All generalized high de-

grees satisfy the complementation property.

Theorem
property.

Question.

Question.

[Kumabe]. All 2-generics satisfy the complementation

Do all 1-generics satisfy complementation?

What is the measure of the degrees which satisfy com-

plementation?



l1-random 2-random 1- generic 2-generic

Minimal no no no no
Bound minimals some no some no
Join some yes yes yes
Cupping some no some yes
Minimal cover some ? ? yes

Complementation ? ? ? yes






