Maximal chains of computable well partial orders

Alberto Marcone

(joint work with Antonio Montalbán and Richard Shore)

Computability Theory Workshop February 6–10, 2012 Oberwolfach

Wpos, maximal linear extensions, maximal chains

Wpos, maximal linear extensions, maximal chains Well-partial-orders

Maximal linear extensions of wpos Maximal chains of wpos

2 Computing maximal chains

Computing strongly maximal chains is hard Computing maximal chains is not easy A way of computing maximal chains

③ Comparison with reverse mathematics

Well-partial-orders

A partial order $\mathcal{P} = (P, \leq_P)$ is a well partial order (wpo) if for every $f : \mathbb{N} \to P$ there exists i < j such that $f(i) \leq_P f(j)$. There are many equivalent characterizations of wpos:

- \mathcal{P} is well-founded and has no infinite antichains;
- every sequence in P has a weakly increasing subsequence;
- every nonempty subset of P has a finite set of minimal elements;
- all linear extensions of \mathcal{P} are well-orders.

The reverse mathematics and computability theory of these equivalences has been studied in (Cholak-M-Solomon 2004).

All equivalences are provable in WKL_0+CAC .

Some examples of wpos

- Finite partial orders
- Well-orders
- Finite strings over a finite alphabet (Higman, 1952)
- Finite trees (Kruskal, 1960)
- Transfinite sequences with finite labels (Nash-Williams, 1965)
- Countable linear orders (Laver 1971, proving Fraïssé's conjecture)
- Finite graphs (Robertson and Seymour, 2004)

The ordering is some kind of embeddability

Closure properties of wpos

- The sum and disjoint sum of two wpos are wpo
- The product of two wpos is wpo
- Finite strings over a wpo are a wpo (Higman, 1952)
- Finite trees with labels from a wpo are a wpo (Kruskal, 1960)
- Transfinite sequences with labels from a wpo which use only finitely many labels are a wpo (Nash-Williams, 1965)

The maximal order type of a wpo

 $\mathcal P$ is a wpo \iff all linear extensions of $\mathcal P$ are well-orders

We denote by $\operatorname{Lin}(\mathcal{P})$ the collection of all linear extensions of \mathcal{P} .

Definition

If \mathcal{P} is a wpo, its maximal order type is

$$o(\mathcal{P}) = \sup\{ \alpha \mid \exists \mathcal{L} \in \operatorname{Lin}(\mathcal{P}) \alpha = \operatorname{ot}(\mathcal{L}) \}.$$

Theorem (de Jongh – Parikh, 1977)

The sup in the definition of $o(\mathcal{P})$ is actually a max, i.e. there exists $\mathcal{L} \in \operatorname{Lin}(\mathcal{P})$ with order type $o(\mathcal{P})$. In other words, every $\mathcal{I} \in \operatorname{Lin}(\mathcal{P})$ embeds into \mathcal{L} . \mathcal{L} is called a maximal linear extension of \mathcal{P} .

Computing maximal linear extensions

Theorem (Montalbán, 2007)

Every computable wpo has a computable maximal linear extension.

However there is no hyperarithmetic function mapping the index of a computable wpo to the the index of one of its maximal linear extensions.

The height of a well founded partial order

 $\mathcal P$ is a wpo $\implies \mathcal P$ is well founded and all its chains are well-orders

We denote by $Ch(\mathcal{P})$ the collection of all chains of \mathcal{P} .

Definition

If \mathcal{P} is well founded, its height is

$$ht(\mathcal{P}) = \sup\{ \alpha \mid \exists \mathcal{C} \in Ch(\mathcal{P}) \alpha = ot(\mathcal{L}) \}.$$

We can also define the height of $x \in P$:

$$\operatorname{ht}_{\mathcal{P}}(x) = \sup\{\operatorname{ht}_{\mathcal{P}}(y) + 1 \mid y <_{P} x\}$$

so that $\operatorname{ht}(\mathcal{P}) = \sup\{\operatorname{ht}_{\mathcal{P}}(x) + 1 \mid x \in P\}.$

Wolk's Theorem

Theorem (Wolk 1967)

If \mathcal{P} is a wpo, the sup in the definition of $ht(\mathcal{P})$ is actually a max, i.e. there exists $\mathcal{C} \in Ch(\mathcal{P})$ with order type $ht(\mathcal{P})$. Such a chain is called a maximal chain of \mathcal{P} .

Actually C can be chosen so that for every $\alpha < ht(\mathcal{P})$ there exists $x \in C$ such that $ht_{\mathcal{P}}(x) = \alpha$. Such a chain is called a strongly maximal chain of \mathcal{P} .

Two questions

In analogy with the Montalbán's result we ask:

Question

If \mathcal{P} is a computable wpo,

how complicated must maximal and strongly maximal chains of $\mathcal P$ be?

It follows from previous work that a computable wpo always has a hyperarithmetic strongly maximal chain.

Question

How complicated must any function taking the computable wpo \mathcal{P} to a maximal chain be?

Computing maximal chains

Wpos, maximal linear extensions, maximal chains Well-partial-orders Maximal linear extensions of wpos

Maximal chains of wpos

2 Computing maximal chains

Computing strongly maximal chains is hard Computing maximal chains is not easy A way of computing maximal chains

3 Comparison with reverse mathematics

Computing strongly maximal chains is hard

Theorem

Let $\alpha < \omega_1^{CK}$. There exists a computable wpo \mathcal{P} such that every strongly maximal chain of \mathcal{P} computes $0^{(\alpha)}$.

The main tool

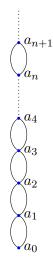
Theorem (Ash-Knight 1990)

Let $\alpha < \omega_1^{CK}$ and A is a $\Pi^0_{2\alpha+1}$ set. There exists a uniformly computable sequence of linear orders \mathcal{L}_n^A such that

$$\operatorname{ot}(\mathcal{L}_n^A) = \begin{cases} \omega^{\alpha} & \text{if } n \in A; \\ \omega^{\alpha+1} & \text{if } n \notin A. \end{cases}$$

This sequence of linear orderings can be computed uniformly in indices for α as a computable ordinal and A as a $\Pi^0_{2\alpha+1}$ set.

Every strongly maximal chain of \mathcal{P} computes $0^{(\alpha)}$: the global view



Every strongly maximal chain of \mathcal{P} computes $0^{(\alpha)}$: zooming

When
$$n \in 0^{(\alpha)}$$
,
 $\operatorname{ot}(\mathcal{L}_{n}^{0^{(\alpha)}}) = \omega^{\alpha}$ and
 $\operatorname{ot}(\mathcal{L}_{n}^{0^{(\alpha)}}) = \omega^{\alpha+1}$;
when $n \notin 0^{(\alpha)}$,
 $\operatorname{ot}(\mathcal{L}_{n}^{0^{(\alpha)}}) = \omega^{\alpha+1}$
and $\operatorname{ot}(\mathcal{L}_{n}^{\overline{0^{(\alpha)}}}) = \omega^{\alpha}$
 $ht_{\mathcal{P}}(a_{n}) = \omega^{\alpha+1} \cdot n$
and $\operatorname{ht}(\mathcal{P}) = \omega^{\alpha+2}$
 da_{n}

The unique strongly maximal chain C of \mathcal{P} always picks the $\omega^{\alpha+1}$ side

$$n \in 0^{(\alpha)}$$
 iff $c_n \in \mathcal{C}$

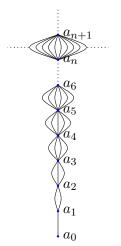
Computing maximal chains is not easy

Theorem

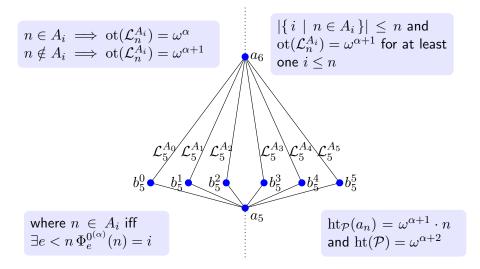
Let $\alpha < \omega_1^{CK}$. There exists a computable wpo \mathcal{P} such that $0^{(\alpha)}$ does not compute any maximal chain of \mathcal{P} .

We are not claiming that the maximal chains of \mathcal{P} compute $0^{(\alpha)}$.

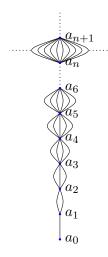
$0^{(\alpha)}$ does not compute any maximal chain of \mathcal{P} : the global view



$0^{(\alpha)}$ does not compute any maximal chain of \mathcal{P} : zooming



$0^{(\alpha)}$ does not compute any maximal chain of \mathcal{P} : concluding



Let C be a maximal chain. Define $\psi \leq_T C$ by $\psi(n) = \begin{cases} i & \text{if } \exists x \in C \ b_n^i \leq_P x <_P a_{n+1}; \\ \uparrow & \text{otherwise.} \end{cases}$

Infinitely often ψ picks an $\omega^{\alpha+1}$ chain.

Fix e. There exists n > e such that $n \notin A_{\psi(n)}$. Thus $\Phi_e^{0^{(\alpha)}}(n) \neq \psi(n)$ and thus $\psi \neq \Phi_e^{0^{(\alpha)}}$.

Therefore $\psi \not\leq_T 0^{(\alpha)}$ and $\mathcal{C} \not\leq_T 0^{(\alpha)}$.

Generic sets for Cohen forcing

Definition

For $\alpha < \omega_1^{CK}$, a set G is α -generic if the conditions which are initial segments of G suffice to decide all Σ_{α} -questions.

G is hyperarithmetically generic if it is α -generic for every $\alpha < \omega_1^{\text{CK}}$.

- Almost every set, in the sense of category, is hyperarithmetically generic
- A hyperarithmetically generic is not hyperarithmetic
- A hyperarithmetically generic does not compute any noncomputable hyperarithmetic set

Almost every set computes maximal chains

Theorem

Let G be hyperarithmetically generic.

For every computable wpo \mathcal{P} , there exists a maximal chain \mathcal{C} in \mathcal{P} such that $\mathcal{C} \leq_T G$.

If $ht(\mathcal{P}) < \omega^{\alpha+1}$, then $2 \cdot \alpha$ -genericity of G suffices.

- Almost every set, in the sense of category, computes maximal chains
- Every computable wpo has a maximal chain that does not compute any noncomputable hyperarithmetic set, i.e. maximal chains cannot code any $0^{(\alpha)}$

Nonuniformity

Our proof of the previous result has several nonuniform steps.

If \mathcal{L}_0 and \mathcal{L}_1 are computable well-orders consider $\mathcal{L}_0 \oplus \mathcal{L}_1$, which is a computable wpo.

A maximal chain of $\mathcal{L}_0 \oplus \mathcal{L}_1$ is included in some \mathcal{L}_i ,

and the i is uniformly computable from the maximal chain and the wpo.

Then \mathcal{L}_{1-i} embeds in \mathcal{L}_i and \mathcal{L}_i is the longer chain.

By Ash-Knight this can uniformly code any hyperarithmetic set.

Theorem

There is no hyperarithmetic procedure which calculates a maximal chain of every computable wpo.

Suppose f is such that, for every index e for a computable wpo \mathcal{P} , $n \mapsto f(e, n)$ is a maximal chain of \mathcal{P} . Then f computes every hyperarithmetic set.

Comparison with reverse mathematics

() Wpos, maximal linear extensions, maximal chains

Well-partial-orders Maximal linear extensions of wpos Maximal chains of wpos

Ocomputing maximal chains

Computing strongly maximal chains is hard Computing maximal chains is not easy A way of computing maximal chains

③ Comparison with reverse mathematics

Some equivalences with ATR₀

Theorem

Over RCA_0 , the following are equivalent to ATR_0 :

- 1 the maximal linear extension theorem for wpos [M-Shore 2011];
- 2 the maximal chain theorem for wpos [M-Shore 2011];
- 3 the strongly maximal chain theorem for wpos [M-Shore 2011];
- König's duality theorem for bipartite graphs [Aharoni-Magidor-Shore 1992, Simpson 1994].

These are all statements of the form $\forall X(\varphi(X) \implies \exists Y \psi(X,Y)).$

Different complexity

For statements of the form $\forall X(\varphi(X) \implies \exists Y \psi(X, Y))$ we ask if X is computable, how complicated must Y be?

- 1 A computable wpos has a computable maximal linear extension
- 2 A computable wpos has a hyp maximal chain, but maximal chains can be incomparable with all noncomputable hyp sets
- 3 A computable wpos has a hyp strongly maximal chain, and strongly maximal chains can be of arbitrarily high complexity in the hyp hierarchy
- There exists a computable bipartite graph such that any pair matching/cover satisfying König's duality computes every hyp set and hence is not hyp

These are four different levels of computational complexity for theorems all axiomatically equivalent to ATR_0 . The phenomena in 2 seems to be new.