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Computable Fields: the Basics

A computable field F is a field with domain ω, for which the
addition and multiplication functions are Turing-computable.
An element x ∈ F is algebraic if it satisfies some polynomial over
the prime subfield Q or Fp; otherwise x is transcendental. F itself
is algebraic if all of its elements are algebraic.
Let E |= ACF0 be the algebraic closure of F . The type over F of
an x ∈ E is determined by its minimal polynomial p(X ) over F .
The formula “p(X ) = 0” generates a principal type over F iff p(X )
is irreducible in F [X ]. Conversely, every principal 1-type in ACF0
over F is generated by such a formula.
SF = {p ∈ F [X ] : (∃ nonconstant p0,p1 ∈ F [X ]) p = p0 · p1}
is the splitting set of F . It is Turing-equivalent to the root set
RF = {p ∈ F [X ] : p has a root in F}.
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Kronecker’s Theorem for Fields
Theorem (Kronecker, 1882)
I. The field Q has a splitting algorithm (i.e. SQ is computable).
II. If F has a splitting algorithm and x is algebraic over F , then F (x) has
a splitting algorithm, uniformly in the minimal polynomial of x over F .
III. If F has a splitting algorithm and x is transcendental over F , then
F (x) has a splitting algorithm.

Parts I and II are crucial for building isomorphisms between algebraic
fields. If F has domain {x0, x1, . . .}, then we find the minimal
polynomial of x0 over Q (using I), then the minimal polynomial of x1
over Q(x0) (using II), and so on.

The algorithms for parts II and III are different. So, to build a splitting
algorithm for each Q(x0, x1, . . . , xn) ⊆ F uniformly in n, one would need
to decide whether each xn+1 is algebraic over Q(x0, . . . , xn) or not.
This is possible iff F has a computable transcendence basis.
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Rabin’s Theorem, for Fields

Definition
Let F be a computable field. A Rabin embedding of F is a computable
field embedding g : F ↪→ E such that E is computable, is algebraically
closed, and is algebraic over the image g(F ).

Rabin’s Theorem (Trans. AMS, 1960)
I. Every computable field F has a Rabin embedding.

II. If g : F ↪→ E is a Rabin embedding, then the following c.e. sets are
all Turing-equivalent:

1 The Rabin image g(F ), within the domain ω of E .
2 The splitting set SF of F .
3 The root set RF of F .
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Differential Fields

Definition
A differential field K is a field with one or more additional unary
operations δ satisfying:

δ(x + y) = δx + δy and δ(xy) = xδy + yδx .

K is computable if both δ and the underlying field are.

Examples
The field Q(X1, . . . ,Xn) of rational functions in n variable over Q,
with n derivations: δi(y) = ∂

∂Xi
(y).

The field Q(X , δX , δ2X , δ3X , . . .) with differential transcendental X .
Any field, with the trivial derivation δy = 0.

Every K has a differential subfield CK = {y ∈ K : δy = 0}, the
constant field of K .
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Adapting the Notions of Fields

Most field-theoretic concepts have analogues over differential fields.
K{Y} = K [Y , δY , δ2Y , δ3Y , . . .] is the differential ring of all
differential polynomials over K .
Examples of polynomial differential equations:

δY − Y = 0, (δ4Y )7 − 2Y 3 = 0, (δ4Y )3(δY )2Y 8 − 6 = 0.

These are ranked by their order r , then by their degree in δr Y ,
then by their degree in δr−1Y , etc.

An element x ∈ L, where K ⊆ L, is differentially algebraic over K if
p(x) = 0 for some nonzero p ∈ K{Y}. This holds iff the differential
field K 〈x〉 has finite transcendence degree over K . Otherwise
{x , δx , δ2x , . . .} is algebraically independent over K , and x is said
to be differentially transcendental.
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Differential Closures

The theory DCF0 of differentially closed fields was axiomatized by
Blum, using:

∀p,q ∈ K{Y} [ord(p) > ord(q) =⇒ ∃x(p(x) = 0 6= q(x))].

For a field F , the algebraic closure of F is the prime model of the
theory ACF0 ∪ AtDiag(F). Analogously, we define the differential
closure K̂ of K to be the prime model of DCF0 ∪ AtDiag(K).

If ord(p) > 0, then the equation p(Y ) = 0 will have infinitely many
solutions in the differential closure K̂ . (If p(x1) = · · · = p(xn) = 0, then
by Blum, p(Y ) = 0 6= (Y − x1) · · · (Y − xn) has a solution.) Therefore,
K̂ is not minimal: it is isomorphic to some proper subfield of itself.

In fact, it can happen that K ( L ⊆ K̂ , yet K̂ is not a differential closure
of L, but rather L̂ ( K̂ .

Russell Miller (CUNY) Computable Differential Fields Oberwolfach 2012 7 / 20



Elements of Differential Closures

With K = Q(X ), the equation δY = Y certainly has solutions in K̂ , but
the solution Y = 0 is different from all the other solutions. All solutions
are of the form cy0, where c ∈ K with δc = 0 and y0 6= 0 is a single
fixed nonzero solution. For c1 6= 0 6= c2, the solutions c1y0 and c2y0
are interchangeable by an automorphism over K . So the formula
“δY = Y ” does not generate a principal type – but the formula
“δY = Y & Y 6= 0” does.

Also, if x has δx = 0 but q(x) 6= 0 for every (algebraic) polynomial
q(Y ) ∈ K [Y ], then x realizes a non-principal type over K . (Such an x
is called a transcendental constant.) So this type is not realized in the
differential closure K̂ .
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Constrained Pairs
Definition (from model theory)
For a differential field K , a pair (p,q) from K{Y} is a constrained pair
if p is monic and algebraically irreducible and ord(p) > ord(q) and

∀x , y ∈ K̂ [(p(x) = 0 6= q(x) & p(y) = 0 6= q(y)) =⇒ x ∼=K y ].

Facts:
Every principal type over DCFK

0 is generated by some constrained
pair. (So every x ∈ K̂ satisfies some constrained pair.)
(p,q) is a constrained pair iff, for all x , y ∈ K̂ satisfying (p,q),
x and y are zeroes of exactly the same polynomials in K{Y}. So it
is Π0

1 to be a constrained pair, assuming K̂ is computable.

Definition
TK is the set of pairs (p,q) from K{Y} which are not constrained pairs
over K . (So TK is Σ0

1, just like SF .) TK is called the constraint set.
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Rabin’s Theorem, for Differential Fields

Definition
Let K be a computable differential field. A (differential) Rabin
embedding of K is a computable embedding g : K ↪→ L of differential
fields, such that L is a differential closure of the image g(K ).

Theorem (Harrington, JSL 1974)
I. Every computable differential field K has a differential Rabin
embedding.

II. ?????

Harrington proved the first half of Rabin’s Theorem for differential
fields. However, his proof does not give any insight into what the
generators of principal types may be, or what set should be analogous
to the splitting set SF of a field F . TK is a natural guess.
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Does Rabin’s Theorem Carry Over?

Let g : L ↪→ K̂ be a Rabin embedding, so K = g(L) is c.e. Assume K is
nonconstant. Then the following are computable from an oracle for
TK (≡T TL):

K itself, as a subset of K̂ .
Algebraic independence over K : the set DK is decidable:

DK = {〈x1, . . . , xn〉 ∈ K̂<ω : ∃h ∈ K [X1, . . . ,Xn] h(x1, . . . , xn) = 0}.

The minimal differential polynomial over K of arbitrary y ∈ K̂ .

So half of Rabin’s Theorem holds: g(L) ≤T TL. However, we have
shown that the reverse reduction fails in certain cases.
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Kronecker’s Theorem for Differential Fields

Theorem (Kronecker, 1882)
I. The field Q has a splitting algorithm (i.e. SQ is computable).
II. If F has a splitting algorithm and x is algebraic over F , then F (x) has
a splitting algorithm, uniformly in the minimal polynomial of x over F .
III. If F has a splitting algorithm and x is transcendental over F , then
F (x) has a splitting algorithm.

For nonconstant differential fields, we can now prove the analogue of
II, with SF replaced by TK .

Parts I and III remain open for differential fields, but we conjecture that
we have an algorithm for part III. (In I, Q could be replaced by some
simple differential field, such as Q(x) under d

dx , or Q(t).)
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Kronecker II: TK 〈z〉 ≤T TK

Theorem
For any computable differential field K with nonzero derivation, and
any z ∈ K̂ , we have TK 〈z〉 ≤T TK , uniformly in z.

K̂ is also a differential closure of K 〈z〉, and the identity map on K 〈z〉 is
a Rabin embedding.
TK 〈z〉 is c.e., so we will show that its complement is c.e. in TK . Find
some (pz ,qz) ∈ TK satisfied by z, say of order rz . Then
K 〈z〉 = K (z, , δz, . . . , δrz−1z, δr z), and a tuple ~x ∈ K̂<ω is algebraically
independent over K 〈z〉 iff {~x , z, δz, . . . , δrz−1z} is algebraically
independent over K , which is decidable in TK .

For the proof, we are given (p,q) from K 〈z〉{Y}. The following
TK -computable process halts iff (p,q) /∈ TK 〈z〉.
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(p,q) /∈ TK 〈z〉 is ΣTK
1

1 Search for x ∈ K̂ with {x , δx , . . . , δord(p)−1x} /∈ DK 〈z〉, such that x
satisfies (p,q). Then find (px ,qx ) ∈ TK satisfied by x .

2 Find some u ∈ K̂ such that K 〈x , z〉 = K 〈u〉, and find (pu,qu) ∈ TK
satisfied by u. Say u = f (x , z), x = g(u), z = h(u).

3 Let q̃(X ) be the product of the separant and the initial of p(X ), the
numerator of qu(f (X , z)), and the denominators of f (X , z),
g(f (X , z)), and h(f (X , z)). So q̃(x) 6= 0.

Fact: If x̃ ∈ K̂ satisfies (p, q̃), then x ∼=K 〈z〉 x̃ . (See next slide!)
4 By the Differential Nullstellensatz, we can decide whether

V (p, q̃) ⊆ V (p,q). If so, then every x̃ satisfying (p,q) satisfies
(p, q̃), and so (p,q) /∈ TK 〈z〉. If not, then some y satisfies (p,q) but
has q̃(y) = 0 6= q̃(x), so y 6∼=K 〈z〉 x , and thus (p,q) ∈ TK 〈z〉.
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(p, q̃) Has the Constraint Property

Suppose p(x̃) = 0 6= q̃(x̃), and set ũ = f (x̃ , z). Then qu(ũ) 6= 0.

However, every j ∈ K 〈z〉{X} with j(x) = 0 has j(x̃) = 0, and we know
pu(f (x , z)) = 0. So ũ satisfies (pu,qu), and u ∼=K ũ, say via σ.

Now 0 = h(u)− z = h(f (x , z))− z = h(f (x̃ , z))− z = h(ũ)− z,
so σ(z) = σ(h(u)) = h(σ(u)) = h(ũ) = z.

And 0 = g(u)− x = g(f (x , z))− x = g(f (x̃ , z))− x̃ = g(ũ)− x̃ ,
so σ(x) = σ(g(u)) = g(σ(u)) = g(ũ) = x̃ .

So this σ maps K 〈z, x〉 isomorphically onto K 〈z, x̃〉, fixing K 〈z〉 and
sending x to x̃ .
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so σ(z) = σ(h(u)) = h(σ(u)) = h(ũ) = z.
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Failure of Rabin’s Theorem

Theorem
There exists a computable differential field L with Rabin embedding
g : L ↪→ L̂ such that TL 6≤T g(L)

We set L0 = Q(t0, t1, . . .) with {ti}i∈ω differentially independent over Q.
Let g be a Rabin embedding of L0 into L̂, and enumerate
K ⊇ K0 = g(L0) inside L̂ as follows.

1 Use the Rosenlicht polynomials:

pn(Y ) = δY − tn(Y 3 − Y 2).

2 If n enters ∅′ at stage s, find an xn ∈ L̂ with pn(xn) = 0, such that
Ks〈xn〉 ∩ {0,1, . . . , s} ⊆ Ks. Set Ks+1 = Ks〈xn〉.

So n ∈ ∅′ iff (pn,1) ∈ TK . But each x ∈ L̂ lies in K iff x ∈ Kx , so K is
computable. (Moreover, L̂ really is a differential closure of K , so the
identity map on K is a Rabin embedding into K̂ = L̂.)
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Constrainability

The Rosenlicht polynomials pn(Y ) have another purpose. Let
K0 = g(L) ⊆ K ⊆ L̂, still with L = Q(t0, t1, . . .).

If pn(Y ) has no zeros in K , then (p,Y (Y − 1)) ∈ TK .
If pn(Y ) has one zero x0 in K , then (p,Y (Y − 1)(Y − x0)) ∈ TK .
If it has two zeros x0, x1, then (p,Y (Y − 1)(Y − x0)(Y − x1)) ∈ TK .

...
If pn has infinitely many zeros in K , then p is unconstrainable:
there is no q ∈ K{Y} with (p,q) ∈ TK .

In this last case, what if K contains only half of the (infinitely many)
zeros of pn in K̂ ? The remaining half no longer satisfy any constraint
over K . So, although they lie in L̂, they fail to lie in K̂ . That is:

g(L) ( K ( K̂ ( L̂.
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Constrainability is Σ0
2

Recall: p ∈ K{Y} is constrainable over K iff:

(∃q ∈ K{Y}) (p,q) ∈ TK .

Since TK is Π0
1, constrainability is Σ0

2. The same follows from the
equivalent condition: p is constrainable iff p is the minimal differential
polynomial over K of some x ∈ K̂ .

(∃x ∈ K̂ )[p(x) = 0 & {x , δx , δ2x , . . . , δord(p)−1x} is alg. indep./K ].

Using Rosenlicht’s polynomials, one readily proves:

Theorem
There exists a computable differential field K such that the set of
constrainable polynomials in K{Y} is Σ0

2-complete.
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A Stronger Result

Theorem
There exists a computable differential field K such that the constraint
set TK is Π0

1-complete and the algebraic dependence set

DK = {~x ∈ K<ω : (∃p ∈ K [~X ]) p(~x) = 0}

has high degree < 0′ = deg(TK ).

Proof: We use the same strategy as above to make the set of
constrainable polynomials Σ0

2-complete. Since DK can enumerate this
set, DK is high. Simultaneously, we code ∅′ into TK as before. When
we want to enumerate a pair (pn,q) into TK , we choose from among
infinitely many zeros of p(Y ) in K̂ . This can therefore be mixed with a
Sacks preservation strategy, to ensure that DK cannot compute TK .
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Questions

The minimal open question: What about Kronecker I?

If Kronecker I holds, many computable model theoretic questions
about differentially algebraic differential fields.
What about Kronecker III? If z is differentially transcendental over
K , must TK 〈z〉 ≤T TK ? (Conjecture: Yes.)
Rabin’s Theorem for fields showed that SF ≡T g(F ). We know
that TK ≡ g(K ) fails in general for differential fields. What join of
sets or properties of differential fields could be used to replace
g(K ) and make the statement true? Likewise, what join of sets or
properties is ≡T g(K )?
Give a more intuitive description of the differential closures of
Q(x), of Q(t), and of Q(t0, t1, . . .).
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