Copy vs Diagonalize

Antonio Montalbán. U. of Chicago

Oberwolfach – February 2012

The Game: Copy vs Diag

Let \mathbb{K} be a class of structures on a relational language.

The players: C and D.

They build sequences of finite structures alternatively:

- If $C, D \in \mathbb{K}$ are isomorphic then C wins.
- If $\mathcal{C}, \mathcal{D} \in \mathbb{K}$ are not isomorphic then D wins.
- If $C \in \mathbb{K}$, but $D \notin \mathbb{K}$, then C wins.
- If $\mathcal{D} \in \mathbb{K}$, but $\mathcal{C} \notin \mathbb{K}$, then D wins.
- If $\mathcal{C} \notin \mathbb{K}$, $\mathcal{D} \notin \mathbb{K}$, then D wins.

note 2: To play a finite structure legally,

a player has to eventually mark it with a move ' \Box '.

Def: \mathbb{K} is *copyable* if *C* has a computable winning strategy. \mathbb{K} is *diagonalizable* if *D* has a computable winning strategy.

Examples

Theorem ([Kach, M])

Linear orderings are diagonalizable.

The ideas in this proof are due to:

[Jockusch, Soare 91]: Not every low linear order has computable copy. [R. Miller 01]: There is an \mathcal{L} with $Spec(\mathcal{L}) \cap \Delta_2^0 = \Delta_2^0 \setminus \{0\}$.

Theorem

The class \mathbb{K} of Boolean algebras with a predicate for atom, and with infinitely many atoms, is copyable.

The ideas in this proof are due to:

[Downey Jockusch 94]: Every low Boolean algebra has computable copy.

Theorem

The class \mathbb{K} of Boolean algebras with predicates for atom, infinite, atomless, and with infinitely many atoms, is copyable.

The ideas in this proof are due to:

[Thurber 95]: Every low₂ Boolean algebra has low copy.

Def: \mathbb{K} is *computably listable* if

there exists a computable list of all computable structures in $\mathbb K.$

Definition

 \mathbb{K} is *listable* if there exists a Turing functional Φ , s.t., $\forall X \in 2^{\omega}$, Φ^X lists all the X-computable structures in \mathbb{K} .

Theorem (M)

If \mathbb{K} is copyable, it's listable.

The theorem doesn't reverse but...

The ∞ -Game

Now, player C builds infinitely many structures C^0 , C^1 , C^2 ,....

Player D		$\mathcal{D}[0]$	\subseteq	$\mathcal{D}[1]$			$O_{s} = [-]$
	$\mathcal{C}^{0}[0]$	\subseteq	$\mathcal{C}^{0}[1]$	\subseteq			let $\mathcal{C}^0 = \bigcup_s \mathcal{C}^0[s]$
Player <i>C</i>			$\mathcal{C}^1[0]$	\subseteq			let $\mathcal{C}^1 = \bigcup_s \mathcal{C}^1[s]$
					$C^2[0]$	•••	let $\mathcal{C}^2 = \bigcup_s \mathcal{C}^1[s]$
						:	

- If $\mathcal{D}, \mathcal{C}^0, \mathcal{C}^1, ... \in \mathbb{K}$, and for all $i, \mathcal{D} \ncong \mathcal{C}^i$ then D wins.
- If $\mathcal{D}, \mathcal{C}^0, \mathcal{C}^1, ... \in \mathbb{K}$, and for some $i, \mathcal{D} \cong \mathcal{C}^i$, then C wins.
- If for some $i, C^i \notin \mathbb{K}$, then D wins.
- If for all $i, C \in \mathbb{K}$, but $D \notin \mathbb{K}$, then C wins.

Def: \mathbb{K} is ∞ -copyable if *C* has a computable winning strategy. \mathbb{K} is ∞ -diagonalizable if *D* has a computable winning strategy.

Theorem (M)

 $\mathbb K$ is listable if and only if it's ∞ -copyable.

The $0^{(k)}$ -Game

Player C now builds infinitely many structures C^0 , C^1 ,.... but needs to choose a single one, C^j , using k-jumps.

Player D		$\mathcal{D}[0]$	\subseteq	$\mathcal{D}[1]$	\subseteq	• • •	let $\mathcal{D} = \bigcup_{s} \mathcal{D}[s]$
	е		f(0)		f(1)	•••	defining $f: \omega \to \omega$
	$\mathcal{C}^{0}[0]$	\subseteq	$\mathcal{C}^{0}[1]$	\subseteq	$\mathcal{C}^{0}[2]$		let $\mathcal{C}^0 = \bigcup_s \mathcal{C}^0[s]$
Player <i>C</i>			$\mathcal{C}^{1}[0]$	\subseteq	$\mathcal{C}^{1}[1]$		let $\mathcal{C}^1 = \bigcup_s \mathcal{C}^1[s]$
-					$C^{2}[0]$	•••	let $\mathcal{C}^2 = \bigcup_s \mathcal{C}^1[s]$
						÷	
						•	

- If $\{e\}^{f^{(k)}}(0)$ \uparrow , then D wins, otherwise, let $j = \{e\}^{f^{(k)}}(0)$.
- If $\mathcal{D}, \mathcal{C}^0, \mathcal{C}^1, ... \in \mathbb{K}$, and $\mathcal{D} \ncong \mathcal{C}^j$, then D wins.
- If $\mathcal{D}, \mathcal{C}^0, \mathcal{C}^1, ... \in \mathbb{K}$, and $\mathcal{D} \cong \mathcal{C}^j$, then C wins.
- If for some $i, C^i \notin \mathbb{K}$, then D wins.
- If for all $i, C \in \mathbb{K}$, but $D \notin \mathbb{K}$, then C wins.

Def: \mathbb{K} is *k*-copyable if *C* has a computable winning strategy. \mathbb{K} is *k*-diagonalizable if *D* has a computable winning strategy.

The $0^{(k)}$ -Game

Obs:

copyable \implies 1-copyable \implies 2-copyable $\implies \cdots \infty$ -copyable. diagonalizable \leftarrow 1-diagonalizable \leftarrow 2-diagonalizable $\leftarrow \cdots \infty$ -diagonalizable.

Theorem

Boolean algebras with predicate for atom are

1-diagonalizable and 2-copyable.

This can be used to prove: [M]: Not every low BA is $0^{(2)}$ -isomorphic to a computable one. Recall:

[Downey, Jockusch 94]: Every low BA is $0^{(3)}$ -iso. to a computable one.

Theorem

[M]: Linear orderings are 4-copyable. [Kach, M]: Linear orderings are 2-diagonalizable.

Question Are linear orderings 3-diagonalizable?

Def: The *jump of a structure* A is another structure A' built by adding relations A, one for each Σ_1^c -formula.

Example:

- For a linear ordering, $\mathcal{L}' \equiv (\mathcal{L}, succ, 0')$.
- For a Boolean alg. $\mathcal{B}' \equiv (\mathcal{B}, atom, 0').$
- For a Boolean alg. $(\mathcal{B}, atom)' \equiv (\mathcal{B}, atom, infinite, atomless, 0')$.
- For a vector space $\mathcal{V}' \equiv (\mathcal{V}, LinDep, 0')$.

Thm: [Soskov][M 09] $Spec(\mathcal{A}') = \{\mathbf{x}' : \mathbf{x} \in Spec(\mathcal{A})\}.$

Def: For a class of structures \mathbb{K} , let $\mathbb{K}' = \{\mathcal{A}' : \mathcal{A} \in \mathbb{K}\}$

Definition

We say that \mathcal{A} has the *low property* if, $\forall X, Y \in 2^{\omega}$ with $X' \equiv_{\mathcal{T}} Y'$, \mathcal{A} has an X-computable copy $\iff \mathcal{A}$ has a Y-computable copy. \mathbb{K} has the *low property* if every \mathcal{A} in \mathbb{K} does.

Thm: [M 09] \mathcal{A} has the low property if and only if, $\forall X \in 2^{\omega}$, \mathcal{A}' has an X'-computable copy $\iff \mathcal{A}$ has a X computable copy.

Theorem (M)

Assume that \mathbb{K} is Π_2^c -axiomatizable, then if \mathbb{K} has the low property, \mathbb{K}' is listable.

Let $\mathbb{B}\mathbb{A}$ be the class of Boolean algebras

Example [Downey, Jockusch 95][Thurber 95][Knight, Stob 00] $\mathbb{B}A$, $\mathbb{B}A'$, $\mathbb{B}A''$ and $\mathbb{B}A'''$ have the low property, and hence $\mathbb{B}A$ has the low₄ property.

Question: Does $\mathbb{BA}^{(n)}$ have the low property for all *n*?

Theorem (Harris–M)

There is a low₅ BA not $0^{(7)}$ -isomorphic to any computable one.

Ideas in the proof:

Let \mathbb{K} be the class of structures $(\mathcal{B}, atom, P)$ where $\mathcal{B} \in \mathbb{BA}$, and P is a unary relation that defines a c.e. subset of the atoms.

- Then \mathbb{K} is 2-diagonalizable.
- \mathbb{K} embeds, in a sense, in $\mathbb{BA}^{(5)}$.

Definition

We say that \mathbb{K} has a *computable 1-back-and-forth structure* if there is effective listing $t_1, t_2, ...$ of all the Σ_1 -types realized in \mathbb{K} , and the set $\{\langle i, j \rangle : t_i \subseteq t_j\}$ is computable.

Example: The following class of structures have computable

- 1-back-and-forth structures:
- linear orderings,
- Boolean algebras,
- Q-vector spaces,
- equivalence structures.

Theorem (M)

Let \mathbb{K} be a Π_2^c -axiomatizable class of structures with a computable 1-back-and-forth structure.

The following are equivalent:

- K has the low property.
- K' is listable.
- \mathbb{K}' is ∞ -copyable.