Three open questions

André Nies

The University of Auckland

OW computability meeting Feb 2012

The ideal of K-trivial Turing degrees

- ► Each *K*-trivial is Turing below a c.e. *K*-trivial.
- ▶ Lots of characterizations of the *K*-trivial, but really not much known that is purely degree theoretic (not mentioning randomness).
- Pretty much all we know:

each K-trivial is superlow, there is cone avoiding below a low c.e. degree, the low₂ c.e. upper bound, and the low Turing cover of Kučera/Slaman (2005)

Question (Miller, N 2006)

Does the ideal K of K-trivial Turing degrees have an exact pair \mathbf{a}, \mathbf{b} in the c.e. degrees? That is, can we make $\mathbf{K} = [\mathbf{0}, \mathbf{a}] \cap [\mathbf{0}, \mathbf{b}]$?

Is the ideal definable without parameters in any Turing degree structure (C.e., Δ_2^0 , all)?

Π^1_1 randomness

Definition

We say a set $Z \subseteq \mathbb{N}$ is Π_1^1 -random if Z is in no null Π_1^1 class.

- There is a universal test, that is, a largest Π¹₁ null class Q, by Kechris (1975); Hjorth, N 2007.
- ► A Π_1^1 -random can be \leq_T Kleenes \mathcal{O} and hyperlow ($\omega_1^X = \omega_1^{CK}$ by Gandy basis theorem.
- Two characterizations via randomness enhancement known (weaker randomness notion + lowness property)

Lowness for Π_1^1 randomness

We say an oracle A is low for Π_1^1 randomness if $\mathcal{Q}^A = \mathcal{Q}$.

Question (Miller, N 2006; Hjorth/N 2007)

Is such an oracle necessarily hyperarithmetical?

We know: low for Δ_1^1 randomness = Δ_1^1 traceable (Chong, N, Yu 2008); low for Π_1^1 ML-rdness = hyperarithmetical (Hj/N 2007)

(Question discussed with Harrington, Slaman, S. Friedman and co-authors on these papers.)

We could also study Π_1^1 random hyperdegrees.

Differentiability

General direction: in *n*-cube $[0, 1]^n$, characterize algorithmic randomness notions by differentiability of effective functions.

For instance:

Question

 $z \in [0,1]^n$ is computably random \Leftrightarrow each computable Lipschitz function $f : [0,1]^n \to \mathbb{R}$ is differentiable at z?

This is true for n = 1 by work of Freer, Kjos-Hanssen and N.