The Stable Ramsey's Theorem for Pairs

Theodore A. Slaman

University of California, Berkeley

February 2012

1/13

Ramsey's Theorem

Definition

For $X \subseteq \mathbb{N}$, let $[X]^n$ denote the size n subsets of X. For n, m > 0 and $F : [\mathbb{N}]^n \to \{0, \ldots, m-1\}, H \subseteq \mathbb{N}$ is homogeneous for F iff F is constant on $[H]^n$.

Theorem (Ramsey, 1930)

For all n, m > 0 and all $F : [\mathbb{N}]^n \to \{0, \ldots, m-1\}$, there is an infinite set H such that H is homogeneous for F.

If we fix n and m, then we represent that instance of Ramsey's Theorem by RT_m^n .

Question

What are the first and second order consequences of RT_m^n ?

Subsystems of Second Order Arithmetic: RCA₀

Definition

A model \mathfrak{M} of second-order arithmetic consists of a structure \mathfrak{N} for first-order arithmetic, called the *numbers* of \mathfrak{M} , and a collection of subsets of \mathfrak{N} , called the *reals* of \mathfrak{M} .

Definition

 RCA_0 is the second-order theory formalizing the following.

- P⁻, the axioms for the nonnegative part of a discretely ordered ring.
- IΣ₁, for φ a Σ₁⁰ predicate, if 0 is a solution to φ and the solutions to φ are closed under successor, then φ holds of all numbers.
- The reals are closed under join and relative Δ_1^0 -definability.

In an ω -model $\mathfrak{M}, \mathfrak{N} = \mathbb{N}$ and the reals of \mathfrak{M} form an ideal in the Turing degrees.

2/13

Recursion Theoretic Content of Ramsey's Theorem

Theorem (Jockusch, 1972)

- ► There is a recursive partition of F of pairs such that there is no F-homogeneous set which is recursive in 0'. (RCA₀ ∀ RT₂²)
- There is a recursive partition F of triples such that 0' is recursive in any infinite F-homogeneous set. (RT³₂ ⊢ ACA₀)

Theorem (Seetapun, 1995)

There is an ideal J in the Turing degrees as follows.

- ► $0' \notin J$
- For every F: [N]² → 2 in J, there is an infinite F-homogeneous H in J.

 $(RT_2^2 \not\vdash ACA_0)$

RT_2^2 , second order consequences

Definition

- An infinite set X is *cohesive* for a family R₀, R₁,... of sets iff for each *i*, one of X ∩ R_i or X ∩ R_i is finite. COH is the principle stating that every family of sets has a cohesive set.
- A partition F: [N]² → N is stable iff for all x, lim_{y→∞} F(x, y) exists. SRT₂² is the principle RT₂² restricted to stable partitions.

Theorem (Cholak, Jockusch, and Slaman, 2001)

 $RCA_0 \vdash \left[RT_2^2 \iff (SRT_2^2 \& COH) \right]$

5/13

Proposal and Rejection

Proposal:

- Show that for every ∆⁰₂ subset A of N, there is a low infinite set H contained in or disjoint from A.
- Iterate this fact to build an ideal J in the Turing degrees consisting of only low sets such that for every Δ₂⁰ subset A of N, there is an infinite H ∈ J contained in or disjoint from A.
- Conclude that (N, J) is a model of SRT²₂ which is not a model of RT²₂.

Rejection:

Theorem (Downey, Hirschfeldt, Lempp, and Solomon, 2001)

There is a Δ_2^0 set with no infinite low subset in either it or its complement.

Stable Partitions

Question

Does SRT_2^2 imply RT_2^2 ?

Observations:

- If F is a stable partition of pairs, then each x has an eventual color given by $\lim_{y\to\infty} F(x,y)$, which can be computed from F'.
- ► If H is infinite and monochromatic with respect to eventual color, then H can compute an F-homogeneous set. Consequently, F' can compute one.
- SRT²₂ is equivalent to "For every ∆⁰₂ property A, there is an infinite set H contained in or disjoint from A."

6/13

RT_2^2 , first order consequences

The following two theorems bracket the first order theory of RT_2^2 .

Theorem (Hirst, 1987)

 $RCA_0 \vdash (SRT_2^2 \Longrightarrow B\Sigma_2)$, where $B\Sigma_2$ is the formalization of the assertion "If a Σ_2 property holds of every element of a finite set then there is a uniform bound on the witnesses."

Theorem (Cholak, Jockusch, and Slaman, 2001)

 RT_2^2 is conservative over $RCA_0 + I\Sigma_2$ for Π_1^1 -sentences.

Question

Does either of SRT_2^2 or RT_2^2 imply $I\Sigma_2$?

SRT_2^2 in a Customized Model

Theorem (Chong, Slaman, and Yang)

There is a model \mathfrak{M} of RCA_0 with the following properties.

- $\mathfrak{M} \models SRT_2^2$
- $\mathfrak{M} \models \neg I \Sigma_2$
- ► Every real in 𝔐 is low in 𝔐.

Corollary

 SRT_2^2 proves neither $I\Sigma_2$ nor RT_2^2 over RCA_0 .

The Natural Numbers of \mathfrak{M}

We construct a model \mathfrak{N} of $P^- + B\Sigma_2$ within which there is a function q that is recursive in 0' behaving as follows.

 $\mathfrak{N}_1 \prec_{\Sigma_1, e} \mathfrak{N}_2 \prec_{\Sigma_1, e} \mathfrak{N}_3 \prec_{\Sigma_1, e} \cdots \prec_{\Sigma_1, e} \mathfrak{N}$

- ▶ For each $i \in \mathbb{N}$, $g(i) \in \mathfrak{N}_i \setminus \mathfrak{N}_{i-1}$, hence $\mathfrak{N} \not\models I\Sigma_2$.
- For each set $Y \subseteq \mathbb{N}$, if Y is definable in \mathfrak{N} then Y has an \mathfrak{N} -finite end-extension in \mathfrak{N} .
- \mathfrak{N} is countable.

10/13

Low Subsets of Δ_2^0 Sets in \mathfrak{N}

Suppose that A is Δ_2^0 in \mathfrak{N} . Build $H_0 \subseteq A$ and $H_1 \subseteq \overline{A}$.

- For $a \in \mathfrak{N}$, adapt Seetapun's argument so as to decide $H'_0 \upharpoonright a$ or of $H'_1 \upharpoonright a$.
- Use reflection to the models M_i of PA to show that the activity of a single step is bounded in M.
- Construct H₀ and H₁ by an ω-length recursion. Each step has two parts:
 - \blacktriangleright an $\Re\mbox{-finite}$ extension, uniformly computed from 0'
 - ▶ a global constraint, non-uniformly computed from 0', depending on a Σ_2 -boolean condition
- Conclude that the construction of H₀ and H₁ is Δ⁰₂ in N, using the N-finite parameter extending the sequence of Σ₂-boolean conditions that appear in the construction.

Extending to a Model of SRT_2^2

We obtain an H as desired, but it does not preserve the Σ_1 -reflection properties of \mathfrak{N} that were used to construct it. So, we cannot simply iterate the argument.

We use a full-approximation construction to obtain a collection of subsets $\mathfrak J$ of $\mathfrak N$ with the desired properties:

- $(\mathfrak{N},\mathfrak{J})\models RCA_0$
- For any $X \in \mathfrak{J}$, X is low in \mathfrak{N} .
- For everyA which is ∆₂⁰ in 𝔅, there is an infinite element of 𝔅 which is contained in it or in its complement.

9/13

Questions

Question

- Does "RCA₀ + SRT²₂ ∀ RT²₂" settle the issue of whether there is an effective proof of Ramsey's Theorem for Pairs given that Ramsey's Theorem for Pairs is true for stable partitions?
- For ω-models, does SRT²₂ imply RT²₂? Perhaps IΣ₂ is sufficient to deduce the implication.

Finis

13/13