Balancing Randomness

Daniel Turetsky, Victoria University of Wellington

http://homepages.ecs.vuw.ac.nz/~dan/

(Joint with Laurent Bienvenu, Noam Greenberg, Antonín Kučera and André Nies)

7 February, 2012

Theorem (Hirschfeldt, Nies & Stephan) Every c.e. set below an incomplete MLR is K-trivial.

Question Is every K-trivial computable from an incomplete MLR?

Theorem (Kučera & Slaman)

There is a low degree which bounds all K-trivials.

Question

Is there a low MLR which computes every K-trivial?

Theorem There is a K-trivial A such that all MLR $X >_T A$ are super-high $(X' \ge_{tt} \emptyset'')$.

Suppose f is a nondecreasing function. Then the derivative exists almost everywhere. So if we effectivize f, some form of randomness implies f'(z) exists.

Suppose *M* is a martingale. Then $\lim_{n} M(X \upharpoonright_{n})$ exists almost everywhere. So if we effective *M*, some form of randomness implies $\lim_{n} M(X \upharpoonright_{n})$ exists.

We effectivize nondecreasing functions with interval c.e. functions:

Definition

An increasing function f is *interval c.e.* if for all rationals a < b, f(b) - f(a) is uniformly left c.e..

Example: the variation of a computable function is interval c.e..

We effectivize martingales with left c.e. martingales. (Not supermartingales.)

Question

For which reals Z does f'(Z) exist for all non decreasing, interval c.e. functions f?

Question

For which reals Z does every left c.e. martingale converge?

Definition

A balanced test is a nested sequence of Σ_1^0 classes $\langle \mathcal{U}_n \rangle$ with $\lambda(\mathcal{U}_n) \leq 2^{-n}$, and the indices of the \mathcal{U}_n are given by a computable approximation function which changes at most 2^n times on input n.

A real Z passes $\langle \mathcal{U}_n \rangle$ if $Z \notin \bigcap \mathcal{U}_n$.

A real Z is balanced random if it passes every balanced test.

Weak Demuth random \Rightarrow balanced random \Rightarrow difference random (all implications proper)

Theorem

If Z is balanced random, then f'(Z) exists for all nondecreasing, interval c.e. functions f.

Idea of proof (for martingale version): Fix rationals $\alpha < \beta$ such that $\exists^{\infty} n \ M(Z \upharpoonright_n) < \alpha$, $\exists^{\infty} n \ M(Z \upharpoonright_n) > \beta$.

An *upcrossing* is a pair of strings $\sigma \prec \tau$ with $M(\sigma) \leq \alpha$, $M(\tau) > \beta$.

Create U_n by searching for upcrossings.

Every time $M(\langle \rangle)$ passes a multiple of 2^{-n} , change the version of U_n .

Definition

For a Π_1^0 class $C \subseteq \mathbb{R}$ and an interval $I \subseteq \mathbb{R}$, the density of C in I is $\rho_C(I) = \lambda(I \cap C)/\lambda(I)$.

For $Z \in \mathbb{R}$, the density of Z in C is $\rho_{\mathcal{C}}(Z) = \liminf_{\substack{|I| \to 0 \\ Z \in I}} \rho_{\mathcal{C}}(I)$.

(Note that $\rho_{\mathcal{C}}([\sigma])$ is a right c.e. martingale.)

By Lebesgue density, almost every $Z \in C$ has density 1 in C.

Theorem (Bienvenu, Hölzl, Miller, Nies) If Z is MLR and not LR-hard, then for every $\Pi_1^0 \mathcal{C} \ni Z$, $\rho_{\mathcal{C}}(Z) = 1$. If f'(Z) exists for all non-decreasing, interval c.e. functions f, then $\rho_{\mathcal{C}}(Z) = 1$ for all $\Pi_1^0 \mathcal{C} \ni Z$.

So if Z is balanced random, then $\rho_{\mathcal{C}}(Z) = 1$ for all $\Pi_1^0 \mathcal{C} \ni Z$.

Does this tell us anything new? Is there an LR-hard balanced random?

If f'(Z) exists for all non-decreasing, interval c.e. functions f, then $\rho_{\mathcal{C}}(Z) = 1$ for all $\Pi_1^0 \mathcal{C} \ni Z$.

So if Z is balanced random, then $\rho_{\mathcal{C}}(Z) = 1$ for all $\Pi_1^0 \mathcal{C} \ni Z$.

Does this tell us anything new? Is there an LR-hard balanced random?

We couldn't build one.

As Carl mentioned, when you have problems, define them away.

The problem was that U_n might use a lot of its changes, while U_{n+1} still has most of its changes left.

Definition

An *Oberwolfach test* is a balanced test such that every time U_{n+1} changes twice, U_n changes at least once.

A real is Oberwolfach random if it passes every Oberwolfach test.

 $\mathsf{Balanced} \ \mathsf{random} \Rightarrow \mathsf{Oberwolfach} \ \mathsf{random} \Rightarrow \mathsf{difference} \ \mathsf{random}$

Theorem

If Z is Oberwolfach random, then f'(Z) exists for all nondecreasing interval c.e. functions f.

Does this fix the problem? No.

But it gets us some nice properties:

Theorem

If Z is MLR but not Oberwolfach random, then Z is h-JT-hard for any computable order h with $\sum_{x} \frac{1}{h(x)} < \infty$, and hence Z is super-high.

Theorem

There is a K-trivial c.e. set A which is not below any Oberwolfach random.

Proof sketch (for balanced random):

Let $\mathcal{E} = \{ Y \mid \exists x \in A[\Theta^Y(x) = 0] \}.$

Beginning at stage s_0 , pick a $v \notin A$, and let $\mathcal{U}_n = \{ Y \notin \mathcal{E}_{s_0} \mid A \upharpoonright_{\nu+1} \prec \Theta^Y \}.$

When $\lambda(\mathcal{U}_n)$ reaches 2^{-n} ...

- 1. if $\lambda(\mathcal{U}_n \cap \mathcal{E}_s) > 2^{-(n+1)}$, choose a large v and start over.
- 2. if $c_{\mathcal{K}}(v,s) > 2^{-(n+1)}$, choose a large v and start over.
- 3. otherwise, enumerate v into A, choose a large v and start over.

Putting these two together,

Corollary

There is a K-trivial A such that all $X >_T A$ which are MLR are super-high.

Also,

Theorem (Figueira, Hirschfeldt, Miller, Ng, Nies) If X is not balanced random, then every $Y \in MLR^X$ is balanced random.

Corollary If $X \oplus Y$ is MLR, then at least one of X, Y is balanced random.

Corollary

There is a K-trivial which is not below both halves of a MLR.

Question

Can we separate Oberwolfach randomness from difference randomness?