Isolation: Motivations and Applications

Guohua Wu Mars Yamaleev

School of Physical and Mathematical Sciences Nanyang Technological University

Oberwolfach, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two results from Kaddah's thesis

- 1. Every low c.e. degree is branching in the d.c.e. degrees.
- 2. There are two d.c.e. degrees **a** and **b** such that they have infimum **d** in the d.c.e. degrees, and there also exists a 3-c.e. degree **x** such that

 $\mathbf{d} < \mathbf{x} < \mathbf{a}, \mathbf{b}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two results from Kaddah's thesis

- 1. Every low c.e. degree is branching in the d.c.e. degrees.
- 2. There are two d.c.e. degrees **a** and **b** such that they have infimum **d** in the d.c.e. degrees, and there also exists a 3-c.e. degree **x** such that

This can be generalized as:

For $n \ge 2$, there are two *n*-c.e. degrees **a** and **b** such that they have infimum **d** in the *n*-c.e. degrees, and there also exists an (n + 1)-c.e. degree **x** such that

Two results from Kaddah's thesis

- 1. Every low c.e. degree is branching in the d.c.e. degrees.
- 2. There are two d.c.e. degrees **a** and **b** such that they have infimum **d** in the d.c.e. degrees, and there also exists a 3-c.e. degree **x** such that

This can be generalized as:

For $n \ge 2$, there are two *n*-c.e. degrees **a** and **b** such that they have infimum **d** in the *n*-c.e. degrees, and there also exists an (n + 1)-c.e. degree **x** such that

$$\mathbf{d} < \mathbf{x} < \mathbf{a}, \mathbf{b}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Consequences:

Cooper and Yi's definition

Definition - Cooper and Yi 95

A d.c.e. degree d is isolated by a c.e. degree a if a < d is the greatest c.e. degree below d.

A d.c.e. degree d is isolated, if it is isolated by some c.e. degree a.

1. Generalize this to isolated (n + 1)-c.e. degrees.

2. Kaddah's work implies such isolated degrees.

▶ The construction of isolated degrees is a "wait and catch an error" process:

construct a d.c.e. set D and a c.e. set A such that

D ≤_T A

• each c.e. set W reducible to $A \oplus D$ is also reducible to A (via a p.c. functional Γ constructed by us).

Theorem - Ding and Qian 96; LaForte 96; Arslanov, Lempp and Shore 96 Both the isolated d.c.e. degrees and the nonisolated d.c.e. degrees are dense in the c.e. degrees.

Kaddah's branching theorem, again - each low nonbranching c.e. degree is isolating.

Theorem - Ishmukhametov and Wu; Li, Wu and Yang

There is a high d.c.e. degree isolated \mathbf{d} by a low c.e. degree \mathbf{c} .

Such a c.e. degree **c** can be found below any nonzero c.e. degree **a**.

Theorem - Arslanov, Lempp, Shore 96

The nonisolating degrees are downwards dense in the d.c.e. degrees, and can occur in every jump class.

Theorem - Salts 2000

The nonisolating degrees are not dense in the c.e. degrees.

Note that the interval of isolating degrees are downwards dense in the c.e. degrees.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bubbles

Arslanov, Kalimullin, Lempp proved recently that D_2 and D_3 are not elementarily equivalent, by showing that D_3 contains 3-bubbles, but not D_2 .

This implies the following bubble theorem:

Theorem - Arslanov, Kalimullin, Lempp

There exist a d.c.e. degrees e and d, such that 0 < d < e and any d.c.e. degree $u \leq e$ is comparable with d.

 \boldsymbol{d} above should be c.e. and hence \boldsymbol{d} isolates $\boldsymbol{e}.$

Theorem - Arslanov, Kalimullin, Lempp Let D and E be d.c.e. sets with $E \leq_T D$, and X be a c.e. set such that

both D and E are c.e. in X

$$\blacktriangleright D \not\leq_T X \leq_T E.$$

Then there exists a d.c.e. set U with $X \leq_T U \leq_T E$ but U and D are Turing incomparable.

 \boldsymbol{d} above is c.e. and hence \boldsymbol{d} isolates $\boldsymbol{e}.$

Bubbles are isolation pairs

Question - Arslanov

Distribution of such isolating degrees - relating to definibility of c.e. degrees in the d.c.e. degrees

$Non-\Sigma_1$ -substructures

1. $\mathcal{R} \not\prec_1 \Delta_2^0$.	(Slaman, 1983)
2. $\mathcal{R} \not\prec_1 \mathcal{D}_2$.	(Yang & Yu, 2006)
3. $\mathcal{D}_m \not\prec_1 \mathcal{D}_n$ for $m < n$.	(Cai, Shore & Slaman, 2011)

Lachlan's nondiamond theorem

1. Lachlan's nondiamond theorem.

- 2. Slaman's cupping theorem
- 3. Slaman Triples

Theorem - Slaman 83

There are c.e. degrees $\mathbf{a}, \mathbf{b}, \mathbf{c}$, and a Δ_2^0 degree \mathbf{d} with $\mathbf{0} < \mathbf{d} < \mathbf{a}$ such that

- ▶ a, b, c form a Slaman triple,
- b > d ∨ b ≥ c.

Theorem - Yang and Yu 06

There are c.e. degrees a, b, c, e and a d.c.e. degree d < a such that $d \not< e$, $d \lor b \not\ge c$ and for any c.e. degree w < a, either $w \lor b \ge c$ or w < e.

Theorem - Cai, Shore and Slaman 2012

There are c.e. degrees $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{e}$ and an (n + 1)-c.e. degree $\mathbf{d} < \mathbf{a}$ such that $\mathbf{d} \lor \mathbf{b} \ngeq \mathbf{c}$, $\mathbf{d} \not\leq \mathbf{e}$, and for any *n*-c.e. degree $\mathbf{v} < \mathbf{a}$, either $\mathbf{v} \lor \mathbf{b} \ge \mathbf{c}$ or $\mathbf{v} < \mathbf{e}$.

A variant of isolation

 \mathbf{e} , a c.e. degree, above bounds all the c.e. degrees below \mathbf{d} , and we say that \mathbf{d} is isolated by \mathbf{e} , from side.

Question:

A question of Arslanov on the number of parameters

Is it necessary for such a c.e. degree e not below d?

- 1. For Cai-Shore-Slaman, if we move \mathbf{e} below \mathbf{d} , then we need \mathbf{e} be *n*-c.e.
- 2. It is nontrivial for isolation from side only when ${\bf d}$ is nonisolated, in the sense of Cooper and Yi.

- Arslanov's cupping theorem: Every nonzero d.c.e. degree cups.
- Downey's diamond theorem: the diamond lattice can be embedded into the d.c.e. degrees preserving 0 and 1.
- Cooper, Harrington, Lachlan, Lempp and Soare's Nondensity Theorem:

There exists a maximal d.c.e. degree $d < 0^\prime,$ and hence the d.c.e. degrees are not dense.

Isolation and diamond embeddings

Theorem - Wu 02

There are c.e. degrees \mathbf{a}, \mathbf{c} and a d.c.e. degree \mathbf{d} such that \mathbf{a}, \mathbf{c} form a minimal pair, \mathbf{a} isolates \mathbf{d} and \mathbf{c} cups \mathbf{d} to $\mathbf{0}'$.

 $\{\boldsymbol{0},\boldsymbol{c},\boldsymbol{d},\boldsymbol{0}'\}$ is a diamond embedding.

Theorem - Downey, Li and Wu

If c > 0 is cappable, then there are a c.e. degree a and a d.c.e. degree d such that a isolates d and c cups d to 0' and caps a to 0.

As a consequence, a c.e. degree is cappable if and only if it has a complement in the d.c.e. degrees.

Maximal degrees and almost universal cupping property

Say that a d.c.e. degree d has almost universal cupping property if it cups every c.e. degree not below it to $\mathbf{0}'$.

- The incomplete maximal d.c.e. degree constructed by Cooper, et al. does have this property.
- A direct construction of a d.c.e. degree with this property.

Theorem - Liu and Wu

There is an almost universal cupping d.c.e. degree d, and a c.e. degrees b < d such that d is isolated by a c.e. degree b below it.

Furthermore, **b** can be cappable.

From this, we have strong diamond embeddings.

We construct a d.c.e. set D, a nonrecursive c.e. sets B satisfying the isolation requirements and also the following cupping requirements:

 \mathcal{R}_e : $K = \Gamma_e^{B,D,W_e} \lor W_e = \Delta_e^B$,

where Γ_e and Δ_e are p.c. functionals constructed by us.

We construct a d.c.e. set D, a nonrecursive c.e. sets B satisfying the isolation requirements and also the following cupping requirements:

 $\mathcal{R}_e: \ K = \Gamma_e^{B,D,W_e} \ \lor \ W_e = \Delta_e^B,$

where Γ_e and Δ_e are p.c. functionals constructed by us.

Theorem - Fang, Liu and Wu

For any nonzero cappable c.e. degree c, there is a d.c.e. degree d with almost universal cupping property and a c.e. degree b < d such that b isolates d and that c and b form a minimal pair.

- $1. \ \mbox{It covers}$ a theorem of Downey, Li and Wu.
- 2. It also implies Li-Yi's cupping theorem.

Theorem - Li and Yi

There are two incomplete d.c.e. degrees d and e such that every nonzero c.e. degree cups at least one of d and e to 0'.

Questions:

- 1. Maximal d.c.e. degrees.
- 2. Decidability of fragments of the theory of d.c.e. degrees

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3. Super-minimal pairs.

Thanks!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 のへの