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How is randomness related to theory of uniform distribution?
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Uniform distribution modulo one

For a real x, {x} = x− bxc.

Definition

A sequence of reals (xn)n≥1 is uniformly distributed modulo one,
abbreviated u.d. mod 1, if for all a, b ∈ [0, 1],

lim
N→∞

#
{
n : 1 ≤ n ≤ N : {xn} ∈ [a, b)

}
N

= b− a
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u.d. mod 1

Consider Lebesgue measure µ on [0, 1] and the product measure µ∞ on [0, 1]N.

Theorem (Hlawka, 1956)

µ∞-almost all elements in [0, 1]N are u.d. in the unit interval.
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Examples

Theorem (Bohl; Sierpinski; Weyl 1909-1910)

A real x is irrational if and only if (nx)n≥1 is u.d. mod 1.

Theorem (Wall 1949)

A real x is Borel normal to base b if and only if (bnx)n≥1 is u.d. mod 1.
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Martin-Löf randomness

Definition (Martin-Löf randomness 1965)

A real x is random if for every computable sequence (Vn)n≥1 of
computably enumerable open sets of reals such that µ(Vn) < 2−n,

x 6∈
⋂
n≥1

Vn.
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Koksma’s General Metric Theorem

Definition (Koksma 1935)

Let Kall be the class of sequences (un : [0, 1]→ R)n≥1 such that

1. un(x) is continuously differentiable for every n,

2. u′m(x)− u′n(x) is monotone on x for all m 6= n,

3. there exists K > 0 such that for all x ∈ [0, 1] and all m 6= n,
|u′m(x)− u′n(x)| ≥ K.

Given a real x and (un : [0, 1]→ R)n≥1 consider (un(x))n≥1.

Theorem (Koksma General Metric Theorem 1935)

Let (un : [0, 1]→ R)n≥1 in Kall. Then, for almost all (Lebesgue
measure) reals x in [0, 1], (un(x))n≥1 is u.d. mod 1.
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Avigad’s Theorem

Theorem (Avigad 2013)

If a real x is Schnorr random then for every computable sequence
(an)n≥1 of distinct integers, (anx)n≥1 is u.d. mod 1.

Randomness and uniform distribution modulo one Verónica Becher



Effective Koksma class K

Definition

Let K be the class of computable sequences (un : [0, 1]→ R)n≥1 in Kall

such that the sequence of derivatives (u′n : [0, 1]→ R)n≥1 is also
computable.
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Proper inclusion

Theorem 1

Let x be a real in [0, 1]. If x is random then for every
(un : [0, 1]→ R)n≥1 in K the sequence (un(x))n≥1 is u.d. mod 1.

The proof considers (un(x))n≥1 not u.d. mod 1 and constructs a Solovay
test that is failed by x.

The converse of Theorem 1 does not hold.

Theorem 2

There is a real x in [0, 1] such that x is not random and for every
(un : [0, 1]→ R)n≥1 in K, (un(x))n≥1 is u.d. mod 1.
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Σ0
1-u.d. mod 1

Definition

A sequence (xn)n≥1 of reals is Σ0
1-u.d. mod 1 if for every Σ0

1 set
A ⊆ [0, 1],

lim
N→∞

1

N
#

{
1 ≤ n ≤ N : {xn} ∈ A

}
= µ(A).
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Examples

Proposition

If x is computable and irrational then (nx)n≥1 is u.d. mod 1 but not
Σ0

1 u.d mod 1.

Proposition (easy extension of Hlawka, 1956)

µ∞-almost all elements in [0, 1]N are Σ0
1-u.d. in the unit interval.
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Inclusion

Theorem 3

Let x be a real number in [0, 1]. If (un : [0, 1]→ R)n≥1 in K and
(un(x))n≥1 is Σ0

1-u.d. mod 1 then x is random.
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Characterization

Theorem (Franklin,Greenberg,Miller,Ng 2012; Bienvenu,Day,Hoyrup,Mezhirov,Shen 2012)

A real x is random if and only if (2nx) is Σ0
1-u.d. mod 1.
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Randomness and uniform distribution

for all (un)n≥1 in K, (un(x))n≥1 is Σ0
1-u.d. mod 1

⇓ ⇑?

exists (un)n≥1 in K, (un(x))n≥1 is Σ0
1-u.d. mod 1

⇓? ⇑

(2nx)n≥1 is Σ0
1-u.d. mod 1

⇓ ⇑

x is random

⇓ 6⇑

for all (un)n≥1 in K is (un(x))n≥1 is u.d. mod 1
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Discrepancy associated to random reals

Problem

Minimize the discrepancy of (un(x))n≥1 for (un : [0, 1]→ R)n≥1 in K
and x random.



Discrepancy associated random reals

Definition

DN ((xn)n≥1) = sup
0≤u<v≤1

∣∣∣∣#{n : 1 ≤ n ≤ N and u ≤ {xn} < v}
N

− (v − u)

∣∣∣∣
Thus, (xn)n≥1 is u.d. mod 1 if lim

N→∞
DN ((xn)n≥1) = 0.

Schmidt, 1972, proved that there is a constant C such that for every
(xn)n≥1 there are infinitely many Ns with

DN ((xn)n≥1) ≥ C logN

N
.

This lower bound is achieved by low-discrepancy sequences.
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