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The Setting

» A — a countable alphabet.
» G — a computable group.
» AC — the set of functions from G to A.

Place the product topology on A°.

Question:
Can we transfer the theory of algorithmic randomness, particularly
prefix-free complexity to A®?



The Uninteresting Part

» Fix an isomorphism between G and N.
» This gives a homeomorphism between A® and AY.
» Transfer the theory via this homeomorphism.

» Use this to define 1-randomness.

Uninteresting because this ignores the group structure of G. But
where exactly does the groups structure come in?

Let's postpone the answer to this question until after we look at
initial segment complexity.



Approximation Sequences

Call (F;)ien an approximation sequence to G if

» Each F; is a finite subset of G.

» Each element of G is contained in all but finitely many F;.

Example
» An approximation sequence to Z is given by F; = [—i,...,i].

» If G is finitely generated, we can take

Fo={g€ G: g=s1...5, where each s;
is a generator or its inverse or 1¢}.

If x € A® and (F;);en is an approximation sequence to G, then we
will think of the “initial segments” of x as being x [g), X [F,- - ..



Initial Segment Complexity for Elements of A®

» If x [F, is an initial segment of x, then what is its prefix free
complexity?

» If o € AF" then we can regard o as a finite subset of G x A.
K (o) can be defined to be the complexity of this finite subset.

» Note that given a description of o we can uniformly compute
the domain of o as well as the values of o(g) for each g in
the domain.



Dimension

We will use initial segment complexity to look at analogues of
effective Hausdorff dimension and effective packing dimension for
elements of AC.

> dim(x) = Iirlian(le”F”)
n—oo n

» Dim(x) == lim supM
n—soo | Fal

Note that this definition is dependent on the approximation
sequence picked, but we will see that in certain cases we can
remove this dependence.



Group Actions as Dynamical Systems

» Let X be asetandlet T : X — X be an automorphism of X.
» We can regard this as Z acting on X with the action defined

by
a(n,x) = T"(x).

We will use - to denote the left-shift action of G on A®. If g € G
and x € A®, then g - x is the element of A® is defined by

(g - x)(h) = x(g*h).



Invariance of Dimension

» Given a description of x [f, and g, how much more
information do we need to determine (g - x) [fg,?

» If h € gF, then we already know (g - x)(h).

[Because (g.x)(h) = x(g~1h)]

Hence K((g:x) IF,) < K(xI£,) + K(g) + [log(A)]IF, \ gFal

lim inf —K((g ) IF.) < liminf KixIr) + [log(A)] liminf —\F,, \ g

n—00 |Fn| n—00 |F,-, n—00 |Fn|

If this last term tends to 0 then dim(g - x) < dim(x).



Fglner Sequences

Definition

An approximation sequence (F;);en to G is called a Fglner
sequence if for all g € G,

. |gFnAF,]
lim—=———=0.
n |Fn|

If we define dimension using Fglner sequences, then for all g € G
and all x € A®

» dim(g - x) = dim(x)
» Dim(g - x) = Dim(x)

When does a group have a Fglner sequence?



Amenable Groups

Theorem

A countable group G has a Fglner sequence if and only if it is
amenable.

Definition

A group G is amenable if there exists a finitely additive measure p
on the powerset of G such that u(G) =1 and for all g € G and
E C G, u(gE) = w(E).

Theorem (Tarski)

A group G is paradoxical if and only if it is not amenable.




Examples of Amenable Groups

All abelian groups are amenable.

v

v

All finitely generated groups of polynomial growth are
amenable.

v

Subgroups of amenable groups are amenable.

v

If N is a normal subgroup of G and each of N, G/N are
amenable then so is G



Topological Entropy

» Let X be a closed subset of A® that is also closed under the
left shift action i.e. g € G and x € X implies g - x € X.

» As the mappings x — g - x are continuous, we can consider X
and the left shift as a topological dynamical system.

> Let X | Fn {X F,: XEX}

The topological entropy of X is denoted ent7(X) and defined to

be o 5%
im 081X TE |

n—00 |Fn]



Topological Entropy and Dimension

Theorem

Let G be a computable amenable group and let X be a computable
subshift of A®. If for all x € X, dim(x) < s, then ent7(X) < s.

This implies that

entr(X) = ZlgN sup{dim?(x): x € X}.

Hence ent7(X) is equal to the Hausdorff dimension of X (by Lutz,
Mayordomo and Hitchcock).

» Case G is N is due to Furstenberg.

» Case G is N? or Z9 is due to Simpson (2014).

» Case G is an amenable group is new. (Dimension must be
defined using an appropriate Fglner sequence.)



Ornstein and Weiss's Work

» Used to prove Shannon-McMillan-Brieman theorem for a
subclass of amenable groups.

» After Lindenstrauss adapted their techniques to give a new
proof for all countable amenable groups.

» Need to restrict to bi-invariant Fglner sequences that are
tempered

U Fi Fasa| < bIFnial

i<n



Ergodic Group Actions

Let (X, X') be a measurable space and p a probability measure on
this space. A group action a: G x X — X is measure preserving if

» For each g € G, x — a(g, x) is measurable.
» Foreach g€ Gand E € X, pu(a(g, E)) = E.

A measure preserving group action is ergodic if for all E € X and
all g € G a(g, E) C E implies that uE =0 or uE = 1.

Question

If a: G x X is an ergodic action for (X, X’), and E € X is it true
that for p almost all x € X,

n—o0 |Fnl

i.e. Does Birkhoff's ergodic theorem hold.



Lindenstrass Theorem

» (Lindenstrass 1999) Birkhoff’s ergodic theorem holds if G is
an amenable group.

» Provided we use tempered bi-invariant Fglner sequences.

» (Moriakov 2017) Has effectivised this proof and shown that it
holds for all 1-random points.

» Lindenstrass also generalised the Shannon-McMillan-Breiman
Theorem to amenable groups.



Entropy

Definition
Let P be a discrete probability measure on the countable set
{c1, @,...}. The Shannon entropy of P is defined by

H(P) = —P(ci)log P(ci).

i=1

“The expected length of an optimal prefix-free code.”



Kolmogorov-Sinai Entropy

Let's return to the space A® and the left shift action of G on AC.

Let 1 be a measure on A® such that left shift action is ergodic.

» If 0 € Af», denote by o] the set {x € A®: x [g,= 0}.
> Define H, = > s pt[o]. log pfo].

» The Kolmogorov-Sinai entropy of p is defined to be

h(p) = lim

n—o0 | Fp|’



Shannon-McMillan-Breiman

Theorem (Lindenstrass (1999))

Let pu be an ergodic measure for the left-shift action on A®. Let h
be the Kolmogorov-Sinai entropy of (A®, -, ). Let (F,) be a
tempered Fglner sequence for G. Then for pi-almost all x € A®.

im 108 1Ix TF.]

= h.
n |Fn|

This is a simplified version of Lindenstrass’s result.



Effective Version

By ergodicity, there are h, and h; such that for y almost all
x € AC,
dim(x) = h; and Dim(x) = h,.

Theorem (Shannon-McMillan-Breiman effective version )

Let G be a computable group and let y be a computable ergodic
measure for the left-shift action on A®. Let h be the
Kolmogorov-Sinai entropy of (A®, -, ). If dimension is defined
using a tempered Fglner sequence, then

If x is g 1-random, dim(x) = Dim(x) = h.

The case that G is N was proved by V'yugin (1998), Hoyrup
(2013).



Entropy as an Isomorphism Invariant

Let A be an alphabet of size n. Call the system (A®, ;1) where
1 is the product of uniform measures on A, the full n shift
over G.

v

v

Kolmogorov-Sinai entropy originates in the proof that the full
2 shift over Z is not isomorphic to the full 3 shift over Z.

v

In fact there is no factor map from the full 2 shift over Z to
the full 3 shift over Z.

v

Reason: factor maps must be decreasing in entropy.

Theorem (Ornstein-Weiss)

If G is infinite and amenable then the Kolmogorov-Sinai entropy
classifies Bernoulli shifts over G up to isomorphism




Entropy for Non-Amenable Groups

» Bowen - Entropy for Free groups and then generalised to Sofic
groups.

» Seward - Rokhlin entropy.

Future directions analyse these entropies from the perspective of
algorithmic randomness.



