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The Setting

I A – a countable alphabet.

I G – a computable group.

I AG – the set of functions from G to A.

Place the product topology on AG .

Question:
Can we transfer the theory of algorithmic randomness, particularly
prefix-free complexity to AG?



The Uninteresting Part

I Fix an isomorphism between G and N.

I This gives a homeomorphism between AG and AN.

I Transfer the theory via this homeomorphism.

I Use this to define 1-randomness.

Uninteresting because this ignores the group structure of G . But
where exactly does the groups structure come in?

Let’s postpone the answer to this question until after we look at
initial segment complexity.



Approximation Sequences

Call (Fi )i∈N an approximation sequence to G if

I Each Fi is a finite subset of G .

I Each element of G is contained in all but finitely many Fi .

Example

I An approximation sequence to Z is given by Fi = [−i , . . . , i ].
I If G is finitely generated, we can take

Fn = {g ∈ G : g = s1 . . . sn where each si

is a generator or its inverse or 1G}.

If x ∈ AG and (Fi )i∈N is an approximation sequence to G , then we
will think of the “initial segments” of x as being x �F0 , x �F1 , . . ..



Initial Segment Complexity for Elements of AG

I If x �Fn is an initial segment of x , then what is its prefix free
complexity?

I If σ ∈ AFn , then we can regard σ as a finite subset of G × A.
K (σ) can be defined to be the complexity of this finite subset.

I Note that given a description of σ we can uniformly compute
the domain of σ as well as the values of σ(g) for each g in
the domain.



Dimension

We will use initial segment complexity to look at analogues of
effective Hausdorff dimension and effective packing dimension for
elements of AG .

Definition

I dim(x) := lim inf
n→∞

K (x �Fn)

|Fn|

I Dim(x) := lim sup
n→∞

K (x �Fn)

|Fn|

Note that this definition is dependent on the approximation
sequence picked, but we will see that in certain cases we can
remove this dependence.



Group Actions as Dynamical Systems

I Let X be a set and let T : X → X be an automorphism of X .

I We can regard this as Z acting on X with the action defined
by

a(n, x) = T n(x).

We will use · to denote the left-shift action of G on AG . If g ∈ G
and x ∈ AG , then g · x is the element of AG is defined by

(g · x)(h) = x(g−1h).



Invariance of Dimension

I Given a description of x �Fn and g , how much more
information do we need to determine (g · x) �Fn?

I If h ∈ gFn then we already know (g · x)(h).

[Because (g .x)(h) = x(g−1h).]

Hence K ((g · x) �Fn) ≤ K (x �Fn) + K (g) + dlog(A)e|Fn \ gFn|

lim inf
n→∞

K ((g · x) �Fn)

|Fn|
≤ lim inf

n→∞

K (x �Fn)

|Fn|
+ dlog(A)e lim inf

n→∞

|Fn \ gFn|
|Fn|

If this last term tends to 0 then dim(g · x) ≤ dim(x).



Følner Sequences

Definition

An approximation sequence (Fi )i∈N to G is called a Følner
sequence if for all g ∈ G ,

lim
n

|gFn∆Fn|
|Fn|

= 0.

If we define dimension using Følner sequences, then for all g ∈ G
and all x ∈ AG

I dim(g · x) = dim(x)

I Dim(g · x) = Dim(x)

When does a group have a Følner sequence?



Amenable Groups

Theorem

A countable group G has a Følner sequence if and only if it is
amenable.

Definition

A group G is amenable if there exists a finitely additive measure µ
on the powerset of G such that µ(G ) = 1 and for all g ∈ G and
E ⊆ G , µ(gE ) = µ(E ).

Theorem (Tarski)

A group G is paradoxical if and only if it is not amenable.



Examples of Amenable Groups

I All abelian groups are amenable.

I All finitely generated groups of polynomial growth are
amenable.

I Subgroups of amenable groups are amenable.

I If N is a normal subgroup of G and each of N, G/N are
amenable then so is G



Topological Entropy

I Let X be a closed subset of AG that is also closed under the
left shift action i.e. g ∈ G and x ∈ X implies g · x ∈ X .

I As the mappings x 7→ g · x are continuous, we can consider X
and the left shift as a topological dynamical system.

I Let X �Fn= {x �Fn : x ∈ X}

Definition

The topological entropy of X is denoted entT (X ) and defined to
be

lim
n→∞

log |X �Fn |
|Fn|

.



Topological Entropy and Dimension

Theorem

Let G be a computable amenable group and let X be a computable
subshift of AG . If for all x ∈ X , dim(x) ≤ s, then entT (X ) ≤ s.

This implies that

entT (X ) = inf
Z∈2N

sup{dimZ (x) : x ∈ X}.

Hence entT (X ) is equal to the Hausdorff dimension of X (by Lutz,
Mayordomo and Hitchcock).

I Case G is N is due to Furstenberg.

I Case G is Nd or Zd is due to Simpson (2014).

I Case G is an amenable group is new. (Dimension must be
defined using an appropriate Følner sequence.)



Ornstein and Weiss’s Work

I Used to prove Shannon-McMillan-Brieman theorem for a
subclass of amenable groups.

I After Lindenstrauss adapted their techniques to give a new
proof for all countable amenable groups.

I Need to restrict to bi-invariant Følner sequences that are
tempered ∣∣∣∣∣∣

⋃
i≤n

F−1i Fn+1

∣∣∣∣∣∣ ≤ b |Fn+1|



Ergodic Group Actions

Let (X ,X ) be a measurable space and µ a probability measure on
this space. A group action a : G ×X → X is measure preserving if

I For each g ∈ G , x 7→ a(g , x) is measurable.

I For each g ∈ G and E ∈ X , µ(a(g ,E )) = µE .

A measure preserving group action is ergodic if for all E ∈ X and
all g ∈ G a(g ,E ) ⊆ E implies that µE = 0 or µE = 1.

Question

If a : G × X is an ergodic action for (X ,X ), and E ∈ X is it true
that for µ almost all x ∈ X ,

lim
n→∞

|{g ∈ Fn : a(g , x) ∈ E}|
|Fn|

= µE?

i.e. Does Birkhoff’s ergodic theorem hold.



Lindenstrass Theorem

I (Lindenstrass 1999) Birkhoff’s ergodic theorem holds if G is
an amenable group.

I Provided we use tempered bi-invariant Følner sequences.

I (Moriakov 2017) Has effectivised this proof and shown that it
holds for all 1-random points.

I Lindenstrass also generalised the Shannon-McMillan-Breiman
Theorem to amenable groups.



Entropy

Definition

Let P be a discrete probability measure on the countable set
{c1, c2, . . .}. The Shannon entropy of P is defined by

H(P) =
∞∑
i=1

−P(ci ) logP(ci ).

“The expected length of an optimal prefix-free code.”



Kolmogorov-Sinai Entropy

Let’s return to the space AG and the left shift action of G on AG .

Let µ be a measure on AG such that left shift action is ergodic.

I If σ ∈ AFn , denote by JσK the set {x ∈ AG : x �Fn= σ}.

I Define Hn =
∑

σ∈AFn µJσK. logµJσK.

I The Kolmogorov-Sinai entropy of µ is defined to be

h(µ) = lim
n→∞

Hn

|Fn|
.



Shannon-McMillan-Breiman

Theorem (Lindenstrass (1999))

Let µ be an ergodic measure for the left-shift action on AG . Let h
be the Kolmogorov-Sinai entropy of (AG , ·, µ). Let (Fn) be a
tempered Følner sequence for G . Then for µ-almost all x ∈ AG .

lim
n

− logµJx �FnK
|Fn|

= h.

This is a simplified version of Lindenstrass’s result.



Effective Version

By ergodicity, there are hu and hl such that for µ almost all
x ∈ AG ,

dim(x) = hl and Dim(x) = hu.

Theorem (Shannon-McMillan-Breiman effective version )

Let G be a computable group and let µ be a computable ergodic
measure for the left-shift action on AG . Let h be the
Kolmogorov-Sinai entropy of (AG , ·, µ). If dimension is defined
using a tempered Følner sequence, then

If x is µ 1-random, dim(x) = Dim(x) = h.

The case that G is N was proved by V’yugin (1998), Hoyrup
(2013).



Entropy as an Isomorphism Invariant

I Let A be an alphabet of size n. Call the system (AG , µ) where
µ is the product of uniform measures on A, the full n shift
over G .

I Kolmogorov-Sinai entropy originates in the proof that the full
2 shift over Z is not isomorphic to the full 3 shift over Z.

I In fact there is no factor map from the full 2 shift over Z to
the full 3 shift over Z.

I Reason: factor maps must be decreasing in entropy.

Theorem (Ornstein-Weiss)

If G is infinite and amenable then the Kolmogorov-Sinai entropy
classifies Bernoulli shifts over G up to isomorphism



Entropy for Non-Amenable Groups

I Bowen - Entropy for Free groups and then generalised to Sofic
groups.

I Seward - Rokhlin entropy.

Future directions analyse these entropies from the perspective of
algorithmic randomness.


